全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2012 

基于粗差判别的参数优化自适应加权最小二乘支持向量机在PX氧化过程参数估计中的应用

DOI: 10.3969/j.issn.0438-1157.2012.12.029, PP. 3943-3950

Keywords: 粗差,加权最小二乘支持向量机,免疫算法,PX氧化过程建模

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对软测量建模过程中数据可能存在粗大误差以及粗差数据对模型的性能产生的影响,提出了一种基于粗差判别的自适应加权最小二乘支持向量机回归方法(WLS-SVM)。该方法首先根据3δ法则检测出样本中的显著误差并加以剔除,然后根据样本误差的大小自适应地调整权值,使得非显著误差对模型性能的影响大大降低。另外,由于最小二乘支持向量机的正则化参数和核宽度参数对模型的拟合精度和泛化能力有较大的影响,一般依靠经验和试算的方法进行估计,耗时且不准确,本文将模型的参数作为进化算法的优化问题,应用自适应免疫算法(AIGA)对参数进行优化选择。仿真实验表明,该方法对非线性系统的建模具有很好的效果。同时,将该方法应用于工业PX氧化建模过程中动力学参数的估计中,结果表明,基于粗差判别的参数优化自适应最小二乘支持向量机预测精度高,取得了较好的效果。

References

[1]  Suykens J A K,van Gestel T,de Brabanter J,de Moor B,Vandewalle J.Least Squares Support Vector Machines[M].Singapore:World Scientific,2002
[2]  Farmer J,Packard N,Perelson A.The immune system,adaptation and machine learning[J].Physica D,1986,22:187-204
[3]  Qian F,Tao L,Sun W,Du W.Development of a free radical kinetic model for industrial oxidation of p-xylene based on artificial network and adaptive immune genetic algorithm[J].Ind. Eng. Chem. Res.,2011,51(8):3229-3237
[4]  Cristianini Nello,Shawe-Taylor John.An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[M].Cambridge:Cambridge University Press,2000
[5]  Lee Dong Eon,Song Ji-Ho,Song Sang-Oak,Yoon En Sup. Weighted support vector machine for quality estimation in the polymerization process[J].Process Design and Control,2005,44:2101-2105
[6]  Zhang X.Using class-center vectors to build support vector machines[J].IEEE Workshop on Neural Networks for Signal Processing,1999,31:3-11
[7]  Lu Zengxiang(卢增祥),Li Yanda(李衍达).Interactive support vector machine learning algorithm and its application[J].Journal of Tsinghua University:Science and Technology(清华大学学报:自然科学版),1999,39(7):93-97
[8]  Suykens J A K,de Brabanter J,Lukas L,Vandewalle J. Weighted least squares support vector machines:robustness and sparse approximation[J].Neurocomputing,2002,48:85-105
[9]  Li Xin(李昕),Yan Xuefeng(颜学峰).Steady state identification method containing outliers detection and its application[J].Journal of East China University of Science and Technology:Natural Science Edition(华东理工大学学报:自然科学版),2009,35(1):144-148
[10]  Liu Ruilan(刘瑞兰),Mu Shengjing(牟盛静),Chu Jian(褚健).Modeling soft sensor based on support vector machine and particle swarm optimization algorithms[J].Control Theory & Applications(控制理论与应用),2006,23(6):895-900
[11]  Lin Bihua(林碧华),Gu Xingsheng(顾幸生).Soft sensor modeling based on DE-LSSVM[J].Journal of Chemical Industry and Engineering(China)(化工学报),2008,59(7):1681-1685
[12]  Cao G,Pisu M,Morbidelli M.A lumped kinetic model for liquid-phase catalytic oxidation of p-xylene to terephthalic acid[J].Chem. Eng. Sci.,1994,49:5775-5788
[13]  Sun W,Pan Y,Zhao L,Zhou X.Simplified free-radical reaction kinetics for p-xylene oxidation to terephthalic acid[J].Chem. Eng. Tech.,2008,31(10):1402-1409

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133