全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

热活化过硫酸盐降解水中卡马西平

DOI: 10.11949/j.issn.0438-1157.20140943, PP. 410-418

Keywords: 热活化过硫酸盐,自由基,卡马西平,降解,反应动力学

Full-Text   Cite this paper   Add to My Lib

Abstract:

以典型抗癫痫药物卡马西平为目标污染物,研究热活化过硫酸盐(thermallyactivatedpersulfate,TAP)技术对其的降解效果。此外,还考察了过硫酸盐初始浓度、温度和零价铁投加量等对降解效果的影响。结果表明,随着过硫酸盐初始浓度的增加,降解速率常数提高,不同温度下卡马西平降解速率常数与过硫酸盐初始浓度表现出良好的线性关系。提高系统温度能够提高卡马西平的降解速率。TAP氧化卡马西平符合拟一级动力学,反应活化能Ea为(120.4±2.6)kJ·mol-1。在TAP系统中加入少量零价铁能够显著地提高卡马西平的降解速率和矿化度。当温度为60℃时,零价铁的最佳投加量为0.05g·L-1。硫酸自由基易于对卡马西平分子结构中氮杂卓环的烯烃双键进行攻击,主要生成羟基化卡马西平、环氧卡马西平、吡啶类醛和酮等中间产物。

References

[1]  Liang C J, Bruell C, Marley M C, et al. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries [J]. Soil & Sediment Contamination, 2003, 12(2): 207-228
[2]  Huang K C, Couttenye R A, Hoag G E. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE) [J]. Chemosphere, 2002, 49(4): 413-420
[3]  Ghauch A, Tuqan A M, Kibbi N. Ibuprofen removal by heated persulfate in aqueous solution: A kinetics study [J]. Chemical Engineering Jouranl, 2012, 197(15): 483-492
[4]  Ghauch A, Tuqan A M. Oxidation of bisoprolol in heated persulfate/H2O systems: Kinetics and products [J]. Chemical Engineering Journal, 2012, 183(5): 162-171
[5]  Gu X G, Lu S G, Li L, et al. Oxidation of 1,1,1-trichloroethane stimulated by thermally activated persulfate [J]. Industrial & Engineering Chemistry Research, 2011, 50(19): 11029-11036
[6]  Waldemer R H, Tratnyek P G, Johnson R L, et al. Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products [J]. Environmental Science & Technology, 2007, 41(3): 1010-1015
[7]  Liang C J, Bruell C J, Marley M C, et al. Persulfate oxidant for in situ remediation of TCE(Ⅰ): Activation by ferrous ion with and without a persulfate-thiosulfate redox couple [J]. Chemosphere, 2004, 55(9): 1213-1223
[8]  Zhao J Y, Zhang Y B, Quan X, et al. Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature [J]. Separation and Purification Technology, 2010, 71(3): 302-307
[9]  Zhou T, Li Y Z, Ji J, et al. Oxidation of 4-chlorophenol in a heterogeneous zero valent iron/H2O2 Fenton-like system: Kinetic, pathway and effect factors [J]. Separation and Purification Technology, 2008, 62(3): 551-558
[10]  House D A. Kinetics and mechanism of oxidations by peroxydisulfate [J]. Chemical Review, 1962, 62(3): 185-200
[11]  Hubner U, Seiwert B, Reemtsma T, et al. Ozonation products of carbamazepine and their removal from secondary effluents by soil aquifer treatment - Indications from column experiments [J]. Water Research, 2014, 49: 34-43
[12]  Calisto V, Domingues M R M, Erny G L, et al. Direct photodegradation of carbamazepine followed by micellar electrokinetic chromatography and mass spectrometry [J]. Water Research, 2011, 45: 1095-1104
[13]  Zhang Y, Geiben S W, Gal C. Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies [J]. Chemosphere, 2008, 73: 1151-1161
[14]  Appavoo I A, Hu J Y, Huang Y, et al. Response surface modeling of carbamazepine (CBZ) removal by graphene-P25 nanocomposites/UVA process using central composite design [J]. Water Research, 2014, 57: 270-279
[15]  Mcdowell D C, Huber M M, Wagner M, et al. Ozonation of carbamazepine in drinking water: identification and kinetic study of major oxidation products [J]. Environmental Science & Technology, 2005, 39(20): 8014-8022
[16]  Guan Y H, Ma J, Li X C, et al. Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system [J]. Environmental Science & Technology, 2011, 45(21):9308-9314
[17]  Anoniou M G, De La Cruz A A, Dionysiou D D. Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e- transfer mechanisms [J]. Applied Catalysis B: Environmental, 2010, 96(3-4): 290-298
[18]  Shukla P, Wang S B, Singh K, et al. Cobalt exchanged zeolites for heterogeneous catalytic oxidation of phenol in the presence of peroxymonosulphate [J]. Applied Catalysis B: Environmental, 2010, 99(1-2): 163-169
[19]  Chen Xiaochang(陈晓畅), Wang Weiping(王卫平), Zhu Fengxiang(朱凤香). Study on the degradation of AO7 by UV/K2S2O8 system: kinetics and pathways [J]. Environmental Science, 2010, 31(7): 1533-1537
[20]  Tan C Q, Gao N Y, Deng Y, et al. Heat-activated persulfate oxidation of diuron in water [J]. Chemical Engineering Journal, 2012, 203(1): 294-300
[21]  Neta P, Huie R E, Ross A B. Rate constants for reactions of inorganic radicals in aqueous solution [J]. Journal of Physical and Chemical, 1988, 17(3): 1027-1284
[22]  Buxton G V, Greenstock C L, Helman W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution [J]. Journal of Physical and Chemical Reference Data, 1998, 17(2): 513-886
[23]  Klaning U K, Sehested K, Appelman E H. Laser flash photolysis and pulse radiolysis of aqueous solutions of the fluoroxysulfate ion, SO4F- [J]. Inorganic Chemistry, 1991, 30(18): 3582-3584
[24]  Maruthamuthu P, Neta P. Radiolytic chain decomposition of peroxomonophosphoric and peroxomonosulfuric acids [J]. Journal of Physical Chemistry, 1977, 81(10): 937-940
[25]  Huie R E, Clifton C L, Alstein N. A pluse radiolysis and flash photolysis study of the radicals SO2-,SO3-,SO4-, and SO5- [J]. International Journal of Radiation Application Instrumentation, Part C, Radiation Physics and Chemistry, 1989, 33(4): 361-370
[26]  Liang C J, Huang S C. Kinetic model for sulfate/hydroxyl radical oxidation of methylene blue in a thermally-activated persulfate system at various pH and temperatures [J]. Sustainable Environment Research, 2012, 22(4): 199-208
[27]  Anipsitakis G P, Dionysiou D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt [J]. Environmental Science & Technololgy, 2003, 37(20): 4790-4797
[28]  Rao Y F, Qu L, Yang H S, et al. Degradation of carbamazepine by Fe(II)-activated process [J]. Journal of Hazardous Materials, 2014, 268: 23-32
[29]  Deng J, Shao Y S, Gao N Y, et al. Degradation of the antiepileptic drug carbamazepine upon different UV-based advanced oxidation processes in water [J]. Chemical Engineering Journal, 2013, 222: 150-158
[30]  Yang Zhaorong(杨照荣), Cui Changzheng(崔长征), Li Bingzhi(李炳智), et al. Degradation of carbamazepine and oxcarbazepine by heat-activated persulfate [J]. Acta Scientiae Circumstantiae, 2013, 33(1): 98-104
[31]  Liang C J, Huang C F, Mohanty N, et al. A rapid spectrophotometric determination of persulfate anion in ISCO [J]. Chemosphere, 2008, 73(9): 1540-1543
[32]  Hayon E, Treinin A, Wilf J. Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. The SO2-, SO-3, SO-4, and SO-5 radicals [J]. Journal of American Chemistry Society, 1972, 94: 47-57
[33]  Rao Y F, Chu W, Wang Y R. Photocatalytic oxidation of carbamazepine in triclinic-WO3 suspension: Role of alcohol and sulfate radicals in the degradation pathway [J]. Applied Catalysis A: General, 2013, 468: 240-249
[34]  Doll T E, Frimmel F H. Removal of selected persistent organic pollutants by heterogeneous photocatalysis in water [J]. Catalysis Today, 2005, 101(3/4): 195-202
[35]  Kosjek T, Andersen H R, Kompare B, et al. Fate of carbamazepine during water treatment [J]. Environmental Science & Technology, 2009, 43(16): 6256-6261
[36]  Chiron S, Minero C, Vione D, et al. Photodegradation processes of the antiepileptic drug carbamazepine, relevant to estuarine waters [J]. Environmental Science & Technology, 2006, 40(19): 5977-5983

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133