全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

不确定条件下中间存储时间有限多产品间歇生产过程调度

DOI: 10.11949/j.issn.0438-1157.20141414, PP. 257-365

Keywords: 间歇过程,生产调度,中间存储,不确定,粒子群优化,分布估计算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对产品处理时间不确定条件下中间存储时间有限多产品间歇生产过程调度问题,采用三角模糊数描述处理时间的不确定性,通过一种模糊排序的方法建立了以最小化模糊最大完工时间的值以及不确定度作为调度目标的数学模型,提出一种基于改进粒子群和分布估计的混合算法(IPSO-EDA)。IPSO-EDA算法在粒子群更新公式中引入基于所有粒子自身最优位置的优质个体分布信息,提高了算法的全局搜索能力,同时采用NEH初始化获得理想的初始解,采用NEH局部搜索提高算法的局部搜索能力。通过正交实验设计对算法的参数进行调节,仿真结果表明了所提出算法的有效性和优越性。

References

[1]  Montgomery D C. Design and Analysis of Experiments [M]. New York: Wiley, 2008
[2]  Wang S Y, Wang L, Liu M, Xu Y. An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem [J]. International Journal of Production Economics, 2013, 145(1): 387-396
[3]  Yue D, You F. Sustainable scheduling of batch processes under economic and environmental criteria with MINLP models and algorithms [J]. Computers & Chemical Engineering, 2013, 54: 44-59
[4]  Liang Tao(梁涛), Li Qiqiang(李歧强). Self-organizing approach to multistage batch scheduling with batching optimization [J]. Control and Decision(控制与决策), 2011, 26(12): 1818-1823
[5]  Pan Q K, Wang L, Gao L, Li W D. An effective hybrid discrete differential evolution algorithm for the flow shop scheduling with intermediate buffers [J]. Information Sciences, 2011, 181(3): 668-685
[6]  Akkerman R, Van Donk D P, Gaalman G. Influence of capacity-and time-constrained intermediate storage in two-stage food production systems [J]. International Journal of Production Research, 2007, 45(13): 2955-2973
[7]  Belaid R, T'kindt V, Esswein C. Scheduling batches in flowshop with limited buffers in the shampoo industry [J]. European Journal of Operational Research, 2012, 223(2): 560-572
[8]  Zhou Xiaohui(周晓慧), Chen Chun(陈纯), Wu Peng(吴鹏), Zheng Junling(郑骏玲). Optimized scheduling of production process based on continuous-time in printing and dyeing industry [J]. CIESC Journal(化工学报), 2010, 61(8): 1877-1881
[9]  Li Z, Ierapetritou M. Process scheduling under uncertainty: review and challenges [J]. Computers & Chemical Engineering, 2008, 32(4): 715-727
[10]  Gu Xingsheng(顾幸生). A survey of production scheduling under uncertainty [J]. Journal of East China University of Science and Technology(华东理工大学学报), 2000, 26(5): 441-446
[11]  Kennedy J, Eberhart R C. Particle swarm optimization//Proceeding of IEEE International Conference on Neural Networks[C]. Perth, Australian, 1995: 1942-1948
[12]  Larra?aga P, Lozano J A. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation[M]. Boston: Kluwer Academic Publishers, 2002
[13]  Sakawa M, Kubota R. Fuzzy programming for multiobjective job shop scheduling with fuzzy processing time and fuzzy duedate through genetic algorithms [J]. European Journal of Operational Research, 2000, 120(2): 393-407
[14]  Lee E S, Li R J. Comparison of fuzzy numbers based on the probability measure of fuzzy events [J]. Computers & Mathematics with Applications, 1988, 15(10): 887-896
[15]  Niu Q, Jiao B, Gu X. Particle swarm optimization combined with genetic operators for job shop scheduling problem with fuzzy processing time [J]. Applied Mathematics and Computation, 2008, 205(1): 148-158
[16]  Jarboui B, Eddaly M, Siarry P. An estimation of distribution algorithm for minimizing the total flowtime in permutation flowshop scheduling problems [J]. Computers & Operations Research, 2009, 36(9): 2638-2646
[17]  Pan Q K, Ruiz R. An estimation of distribution algorithm for lot-streaming flow shop problems with setup times [J]. Omega, 2012, 40(2): 166-180
[18]  Nawaz M, Enscore E, Ham I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem [J]. The International Journal of Management Sciences, 1983, 11(1): 91-95
[19]  Omar A G. A bi-criteria optimization: minimizing the integral value and spread of the fuzzy makespan of job shop scheduling problems [J]. Applied Soft Computing, 2003, 2(3): 197-210
[20]  Reeves C R. A genetic algorithm for flowshop sequencing [J]. Computers & Operations Research, 1995, 22(1): 5-13
[21]  Wang L, Zhang L, Zheng D Z. An effective hybrid genetic algorithm for flow shop scheduling with limited buffers [J]. Computers & Operations Research, 2006, 33(10): 2960-2971
[22]  Eberhart R C, Shi Y. Particle swarm optimization: developments, applications and resources//Proceedings of the IEEE Congress on Evolutionary Computation [C]. Seoul, Korea, 2001: 81-86

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133