全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

基于最小二乘支持向量机的MIMO线性参数变化模型辨识及预测控制

DOI: 10.11949/j.issn.0438-1157.20141636, PP. 197-205

Keywords: 非线性系统,最小二乘支持向量机,线性参数变化模型,多输入多输出,模型预测控制,过程控制,参数识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

将现有的面向单输入单输出系统的基于最小二乘支持向量机的参数变化模型辨识算法(SISO-LSSVM-LPV),推广到多输入多输出系统,实现了面向多输入多输出系统的基于最小二乘支持向量机的参数变化模型辨识算法(MIMO-LSSVM-LPV),进一步结合基于遗传算法的预测控制算法(GA-MPC),提出并实现了MIMO-LSSVM-LPV+GA-MPC的建模控制一体化新架构。仿真结果表明,该辨识算法可逼近复杂非线性MIMO系统,辨识精度高,并且保留了线性回归低计算量的优点,结合了GA的MPC可实现最优控制量的在线实时寻优,并取得了良好控制效果。

References

[1]  Yu Zhao, Huang Biao, Su Hongye, Chu Jian. Prediction error method for identification of LPV models [J]. Journal of Process Control, 2012, 22 (1): 180-193
[2]  Shamma Jeff S, Michael Athans. Analysis of gain scheduled control for nonlinear plants [J]. Automatic Control, IEEE Transactions on, 1990, 35 (8): 898-907
[3]  Previdi F, Lovera M. Identification of a class of non-linear parametrically varying models [J]. International Journal of Adaptive Control and Signal Processing, 2003, 17 (1): 33-50
[4]  Verdult Vincent, Michel Verhaegen. Subspace identification of multivariable linear parameter-varying systems [J]. Automatica, 2002, 38 (5): 805-814
[5]  Tóth Roland, Peter S C Heuberger, Paul M J Van den Hof. Asymptotically optimal orthonormal basis functions for LPV system identification [J]. Automatica, 2009, 45 (6): 1359-1370
[6]  Zhu Y C, Xu Z H. A method of LPV model identification for control//Proceedings of 17th IFAC World Congress [C]. Seoul, Korea, 2008
[7]  Tóth Roland, Vincent Laurain, Wei Xing Zheng, Kameshwar Poolla. Model structure learning: a support vector machine approach for LPV linear-regression models//50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC) [C]. 2011: 3192-3197
[8]  Suykens Johan A K, Joos Vandewalle. Least squares support vector machine classifiers [J]. Neural Processing Letters, 1999, 9 (3): 293-300
[9]  Wang Haifeng, Hu Dejin. Comparison of SVM and LS-SVM for regression//International Conference on Neural Networks and Brain. ICNN&B'05 [C]. 2005: 279-283
[10]  Li Ping (李平), Ren Penghui (任朋辉). Multiple constrained generalized predictive control for cascade industrial systems [J]. CIESC Journal (化工学报), 2010, 61 (8): 2159-2164
[11]  Davis Lawrence. Handbook of Genetic Algorithms[M]. New York: Van Nostrand Reinhold, 1991
[12]  Whitley Darrell. A genetic algorithm tutorial [J]. Statistics and Computing, 1994, 4 (2): 65-85
[13]  Qian Jixin (钱积新), Zhao Jun (赵均), Xu Zuhua (徐祖华). Predictive Control (预测控制) [M]. Beijing: Chemical Industry Press, 2007
[14]  Luo Xionglin (罗雄麟), Yu Yang (于洋), Xu Jun (许鋆). Online optimization implementation on model predictive control in chemical process [J]. CIESC Journal (化工学报), 2014, 65 (10): 3984-3992
[15]  Jie You, Yang Qinmin, Lu Jiangang, Sun Youxian. Identification of LPV models with non-uniformly spaced operating points by using asymmetric gaussian weights [J]. Chinese Journal of Chemical Engineering, 2014, 22 (7): 795-798
[16]  Ge Zhiqiang (葛志强), Song Zhihuan (宋执环). New online monitoring method for multiple operating modes process [J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2008, 59 (1): 135-141
[17]  Oliveira N M C. Newton-type algorithms for nonlinear constrained chemical process control [D]. Pittsburgh: Carnegie Mellon University, 1994
[18]  Martinsen F, Biegler L T, Foss B A. A new optimization algorithm with application to nonlinear MPC [J]. Modeling Identification and Control, 2005, 26 (1): 3-22

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133