全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

产青蒿二烯的人工酵母细胞的构建及发酵优化

DOI: 10.11949/j.issn.0438-1157.20140956, PP. 378-385

Keywords: 合成生物学,青蒿二烯,酿酒酵母,基因工程,发酵

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了异源合成抗疟疾药物青蒿素重要前体青蒿二烯,以酿酒酵母作为底盘细胞,利用基因工程手段构建功能人工酵母细胞。为提高基因拷贝数,并增加重组菌株基因型的稳定性,选择酵母基因组中多拷贝位点Delta为整合点,实现酿酒酵母内源基因tHMGR和ERG20的过表达以及外源基因ADS的整合。过表达tHMGR和ERG20基因增加了酵母体内半萜类物质共同前体法尼基焦磷酸FPP的积累量;而导入外源基因ADS,实现了酵母生产青蒿二烯。经过摇瓶发酵优化实验,人工酵母菌株青蒿二烯产量为225.3mg·L-1;为了进一步提高青蒿二烯产量,经过发酵过程优化和补料策略,人工酵母菌株在5L发酵罐中青蒿二烯产量达到1.05g·L-1。

References

[1]  Paddon C J, Keasling J D. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development [J]. Nature Reviews, 2014, 12(5): 335-367
[2]  Martin V J, Pitera D J, Withers S T, Newman J D, Keasling J D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids [J]. Nature Biotechnology, 2003, 21(7): 796-802
[3]  Ro D K, Paradise E M, Ouellet M, Fisher K J, Newman K L, Ndungu J M, Ho K A, Eachus R A, Ham T S, Kirby J, Chang C Y M, Withers S T, Shiba Y, Sarpong R, Keasling J D. Production of the antimalarial drug precursor artemisinic acid in engineered yeast [J]. Nature, 2006, 440(7086): 940-943
[4]  Tsuruta H, Paddon C J, Eng D, Lenihan J R, Horning T, Anthony L C, Regentin R, Keasling J D, Renninger N S, Newman J D. High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli [J]. PLoS ONE, 2009, 4(2): e4489
[5]  Kong Jianqiang(孔建强), Shen Junhao(沈君豪), Huang Yong(黄勇), Wang Wei(王伟), Cheng Kedi(程克棣), Zhu Ping(朱平). Production of amorpha-4,11-diene in engineered yeasts [J]. Acta Pharmaceutiaca Sinica(药学学报), 2009, 44(11): 1297-1303
[6]  Kong Jianqiang, Wang Wei, Wang Lina, Zheng Xiaodong, Cheng Kedi, Zhu Ping. The improvement of amorpha-4,11-diene production by a yeast-conform variant of vitreoscillahemoglobin [J]. Journal of Applied Microbiology, 2009, 106(3): 941-951
[7]  Westfall P J, Pitera D J, Leihan J R, Eng D, Woolard F X, Regentin R, Horning T, Tsuruta H, MelisD J, Owens A, Fickes S, Diola D, Benjamin K R, Keasling J D, Leavell M D, McPhee D J, Renninger N S, Newman J D, Paddon C J. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin [J]. PNAS, 2012, 109(3): 111-118
[8]  Wang Sijia(王思佳), Ding Mingzhu(丁明珠), Yuan Yingjin(元英进). The impact of promoters and vectors on the amorphadiene production in yeast cells [J]. China Biotechnology(中国生物工程杂志), 2013, 33(8): 15-23
[9]  Jia Yunjing(贾云婧), Zhao Juan(赵娟), Ding Mingzhu(丁明珠), Yuan Yingjin(元英进). Fitness of amorphadiene production functional modules and yeast chassis [J].Chemical Journal of Chinese Universities(高等学校化学学报), 2013, 34(12): 2765-2771
[10]  Lei Wei(雷桅), Tang Shaohu(汤绍虎), Zhou Qigui(周启贵), Shui Xiaorong(税晓容), Sun Yiming(孙一鸣), Sun Min(孙敏). Bioinformatics analysis of 3-hydroxy-3-methylglutaryl-coA reductase (HMGR) in isoprenoid biosynthesis of mulberry [J]. Science of Sericulture (蚕业科学), 2008, 34(3): 4609-4614
[11]  Donald K A, Hampton R Y, Fritz I B. Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on a qualene synthesis in Saccharomyces cerevisiae [J]. Applied and Environmental Microbiology, 1997, 63(9): 3341-3344
[12]  Han Junli, Liu Benye,Ye Hechun, Wang Hong, Li Zhenqiu, Li Guofeng. Effects of overexpression of the endogenous farnesyldiphosphate synthase on the artemisinin content in Artemisia annua [J]. Journal of Integrative Plant Biology, 2006, 48(4): 482-487
[13]  Paradise E M, Kirby J, Chan R, Keasling J D. Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase [J]. Biotechnology and Bioengineering, 2008, 100(2): 371-378
[14]  Pitera D J, Paddon C J, Newman J D, Keasling J D. Balancing a heterologous mevalonate pathway for imprive disoprenoid production in Escherichia coli [J]. Metabolic Engineering, 2007, 9: 193-207
[15]  Sakai A, Shimizu Y, Hishinuma F. Integration of heterologous genes into the chromosome of Saccharomyces cerevisiae using a delta sequence of yeast retrotansposon Ty [J]. Applied Microbiology and Biotechnology, 1990, 33(3): 302-306
[16]  Lee Frank W F, SilvaNancy A D. Sequential Delta-integration for the regulated insertion of cloned genes in Saccharomyce scerevisiae [J]. Biotechnology Progress, 1997, 13(4): 368-373
[17]  Wallaart T E, Pras N, Qua X W J. Seasonal variations of artemisinin and its biosynthetic precursors intetraploid Artemisia annua plants compared with the diploid wild-type [J]. Plant Medica, 1999, 65(8): 723-728
[18]  Xu Xingxiang, Zhu Jie, Huang Dazhong, Zhou Weishan. Totalsynthesis of arteannuin and deoxyarteannui [J]. Tetrahedron, 1986, 42(3): 819 -828
[19]  Kong Jianqiang(孔建强), Wang Wei(王伟), Cheng Kedi(程克棣), Zhu Ping(朱平). Research progress in synthetic biology of artemisinin [J]. Acta Pharmaceutiaca Sinica(药学学报), 2013, 48(2): 193-205
[20]  Liu Duo(刘夺), Du Jin(杜瑾), Zhao Guangrong(赵广荣), Yuan Yingjin(元英进). Applications of synthetic biology in medicine and energy [J]. CIESC Journal(化工学报), 2011, 62(9): 2391-2397
[21]  Schramek N, Wang H, R?mischMargl W, Keil B, Radykewicz T, Winzenh?rlein B, Beerhues L, Bacher A, Rohdich F, Gershenzon J, Liu B, Eisenreich W. Artemisinin biosynthesis in growing plants of Artemisia annua. A13CO2 study [J]. Phytochemistry, 2010, 71(2-3): 179-187
[22]  Bouwmeestera H J, Wallaartb T E, Janssena M H A, Loo B V, Jansen B J M, Posthumus M A, Schmidt C O, Kraker J W D, K?nig W A, Franssen M C R. Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis [J]. Phytochemistry, 1999, 52(5): 843-854
[23]  Kuzuyama T, Seto H. Diversity of biosynthesis of the isoprene units [J]. Natural Product Reports, 2003, 20: 171-183
[24]  Tianjin University. A standardized, high accuracy and general method for build of function module[P]: CN, 201310377238.1. 2013-08-27
[25]  van Dijken J P, Bauer J, Brambilla L, Duboc P, Francois J M, Gancedo C, Giuseppin M L, Heijnen J J, Hoare M, Lange H C, Madden E A, Niederberger P, Nielsen J, Parrou J L, Petit T, Porro D, Reuss M, van Riel N, Rizzi M, Steensma H Y, Verrips C T, Vindelov J, Pronk J T. An interlaboratory comparison of physiological and geneticproperties of four Saccharomyces cerevisiae strains [J]. Enzyme Microbiology Technology, 2000, 26: 706-714
[26]  BenAri G, Zenvirth D, Sherman A, David L, Klutstein M, Lavi U, Hillel J. Four linked genes participate in controlling sporulation efficiency in budding yeast [J]. PLoS Genetics, 2006, 2(11): e195
[27]  Albers E, Larsson C, Lidén G, Niklasson C, Gustafsson L. Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation [J]. Applied and Environmental Microbiology, 1996, 62(9): 3187-3195
[28]  Pham H T B, Larsson G, Enfors S O. Growth and energy metabolism in aerobic fed-batch cultures of Saccharomyces cerevisiae: simulation and model verification [J]. Biotechnology and Bioengineering, 1998, 60(4): 474-482
[29]  Watson T G. Amino-acid pool composition of Saccharomyces cerevisiae as a function of growth rate and amino-acid nitrogen source [J]. Journal of General Microbiology, 1976, 96: 263-268

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133