全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

枯草芽孢杆菌与水体中U(Ⅵ)的作用机制

DOI: 10.11949/j.issn.0438-1157.20141082, PP. 764-772

Keywords: 枯草芽孢杆菌,U(Ⅵ),吸附动力学,吸附热力学,作用机理

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过静态吸附-解吸实验,研究了枯草芽孢杆菌对U(Ⅵ)的吸附热力学和动力学,U(Ⅵ)的解吸和菌体内P的释放过程,利用扫描电镜、能谱(SEM-EDS)和红外光谱(FTIR)分析了作用机理。结果表明:当pH=5时,在1L50mg·L-1的铀溶液中,投加枯草芽孢杆菌1.384mg(干重,DW),2h后,铀的去除率和吸附量分别为85.34%和308.31mg·g-1(DW)。随着作用时间从2h延长至48h,铀的解吸率从52.13%下降至36.25%,菌体内释放到溶液中的P浓度从0.12mg·L-1增加到0.40mg·L-1。枯草芽孢杆菌对水体中U(Ⅵ)的吸附行为可以用Langmuir吸附等温模型和准二级动力学方程较好地描述。作用过程是放热,可自发进行。SEM-EDS表明枯草芽孢杆菌与水体中U(Ⅵ)作用后,菌体内部断裂呈短节状,铀沉积在细胞表面及周围,无明显晶体产物生成,FTIR图谱出现UO22+特征吸收峰,氨基、磷酸基团参与枯草芽孢杆菌与水体中U(Ⅵ)的作用。

References

[1]  Lovley D R, Phillips E J P, Gorby Y A, Landa E R. Microbial reduction of uranium [J]. Nature, 1991, 350: 413-416
[2]  Alessi D S, Lezama-Pacheco J S, StubbsJ E, Janousch M, Bargar J R, Persson P, Bernier-Latmani R. The product of microbial uranium reduction includes multiple species with U(Ⅳ)- phosphate coordination [J]. Geochim. Cosmochim. Acta, 2014, 131: 115-127
[3]  Lovley D R. Bioremediation. Anaerobes to the rescue [J]. Science, 2001, 293(5534): 1444-1446
[4]  Liu M X, Dong F Q, Yan X Y, Zeng W M, Hou L Y, Pang X F. Biosorption of uranium by Saccharmyces cerevisiae and surface interactions under culture conditions [J]. Bioresour. Technol., 2010, 101: 8573-8580
[5]  Toshihiko O, Takuo O, Takahiro Y, Fuminori S, Naofumi K, Eiichi W, Arokiasamy J F, Haruyuki I. Mechanisms of uranium mineralization by the yeast Saccharomyces cerevisiae [J]. Geochimica et Cosmochimica Acta, 2005, 69(22): 5307-5316
[6]  Jiang M Y, Ohnuki T, Tanaka K, Kozai N, Kamiishi E, Utsunomiya S. Post-adsorption process of Yb phosphate nano-particle formation by Saccharomyces cerevisiae [J]. Geochimica et Cosmochimica Acta, 2012, 93: 30-46
[7]  Acharya C, andwadkar P, Apte S K. Interaction of uranium with a filamentous, heterocystous, nitrogen-fixing cyanobacterium Anabaena torulosa[J]. Bioresour. Technol., 2012, 116: 290-294
[8]  Peng Guowen(彭国文), Ding Dexin(丁德馨), Hu Nan(胡南), Yang Yushan(杨雨山), Wang Xiaoliang(王晓亮). Adsorption aharacteristics of uranium by Saccharomyces cerevisiae by chemical modification [J]. CIESC Journal(化工学报), 2011, 62(11): 3201-3206
[9]  Rashmi V, Shylajanaciyar M, Rajalakshmi R, D'Souza S F, Prabaharan D, Uma L. Siderophore mediated uranium sequestration by marine cyanobacterium Synechococcus elongatus BDU 130911 [J]. Bioresour. Technol., 2013, 130: 204-210
[10]  Khani M H, Keshtkar A R, Ghannadi M, Pahlavanzadeh H. Equilibrium, kinetic and thermodynamic study of the biosorption of uranium onto Cystoseria indica algae [J]. J. Hazard. Mater., 2008, 150(3): 612-618
[11]  Nie Xiaoqin(聂小琴), Dong Faqin(董发勤), Liu Mingxue(刘明学), Liu Ning(刘宁), Zhang Wei(张伟), Yang Xueying(杨雪颖). Characteristics of U(Ⅵ) biosorption by biological adsorbent of Platanus leaves [J]. Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2013, 33(5): 1290-1294
[12]  Campbell K M, Veeramani H, Ulrich K U, Blue L Y, Giammar D E, Bernier-Latmani R, Stubbs J E, Suvorova E, Yabusaki S, Lezama-Pacheco J S, Mehta A, Long P E, Bargar J R. Oxidative dissolution of biogenic uraninite in groundwater at old rifle, CO [J]. Environ. Sci. Technol., 2011, 45(20): 8748-8754
[13]  Stylo M, Alessi D S, Shao P P Y, Lezama-Pacheco J, Bargar J, Bernier-Latmani R. Biogeochemical controls on the product of microbial U (VI) reduction [J]. Environ. Sci. Technol., 2013, 47: 12351-12358
[14]  McCrate O A, Zhou X, Reichhard C, Cegelski L. Sum of the parts: composition and architecture of the bacterial extracellular matrix [J]. J. Mol. Biol., 2013, 425: 4286-4294
[15]  Li J, Zhang Y. Remediation technology for the uranium contaminated environment: a review [J]. Procedia. Environmental Sciences, 2012, 13: 1609-1615
[16]  Xia Liangshu(夏良树), Tan Kaixuan(谭凯旋), Deng Chang'ai(邓昌爱), Wang Meng(王孟). Synergistic aeration treatment of uranium-contained wastewater by Saccharomyces cerevisiae- activated sludge [J]. Chemical Engineering(China)(化学工程), 2009, 37(3): 5-9
[17]  Salome K R, Green S J, Beazley M J, Webb S M, Kostka J E, Taillefert M. The role of anaerobic respiration in the immobilization of uranium through biomineralization of phosphate minerals [J]. Geochim. Cosmochim. Acta, 2013, 106: 344-363
[18]  Bargar J R, Williams K H, Campbell K M, Long P E, Stubbs J E, Suvorova E I, Lezama-Pacheco J S, Alessi D S, Stylo M, Webb S M, Davis J A, Giammar D E, Blue L Y, Bernier-Latmani R. Uranium redox transition pathways in acetate-amended sediments [J]. Proc. Natl. Acad. Sci. USA, 2013, 110: 4506-4511
[19]  Beazley M J, Martinez R J, Sobecky P A, Webb S M, Taillefert M. Uranium biomineralization as a result of bacterial phosphatase activity insight from bacterial isolates from a contaminated subsurface [J]. Environ. Sci. Technol., 2007, 41: 5701-5707
[20]  Savvin S B. Analytical use of Arsenazo Ⅲ: determination of thorium, zirconium, uranium and rare earth elements [J]. Talanta, 1961, 8(9): 673-685
[21]  Mckelviei D, Peat D M W, Worsfold P J. Techniques for the quantification and speciation of phosphrous on natural water [J]. Analytical Proceedings Including Analytical Communications, 1995, 32: 437-445
[22]  Kushwaha S, Sreedhar B, Padmaja P. XPS, EXAFS, and FTIR as tools to probe the unexpected adsorption coupled reduction of U(Ⅵ) to U(Ⅴ)and U(Ⅳ) on Borassus flabellifer based adsorbents [J]. Langmuir, 2012, 28: 16038-16048
[23]  Gorman-Lewis D, Skanthakumar S, Jensen M P, Mekki S, Nagy K L, Soderholm L. FTIR characterization of amorphous uranyl-silicates [J]. Chemical Geology, 2008, 253(3/4): 136-140

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133