全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

聚丙烯微孔膜的表面矿化修饰及其亲水性能

DOI: 10.11949/j.issn.0438-1157.20141286, PP. 626-634

Keywords: ,表面,分离,亲水性,生物矿化,聚丙烯,碳酸钙

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了改善聚丙烯微孔膜(MPPM)的表面亲水性,通过组合多巴胺氧化聚合和交替浸渍矿化修饰技术,在MPPM表面构建了均匀的CaCO3矿物层,实现了利用CaCO3矿物对膜表面进行亲水化修饰的目的。采用FTIR、XPS、ESEM、EDX和水接触角对矿化膜表面进行了相应的表征。考察了溶液浓度、浸渍循环次数及聚多巴胺涂覆率等对CaCO3矿化率的影响。结果证实,CaCO3矿物均匀地负载在MPPM表面,膜的亲水性因CaCO3固有的润湿性而明显改善。纯水通量测试结果表明,矿化膜具有强的水渗透能力,纯水通量大(高达6450L·m-2·h-1),渗透阻力小,施加0.01MPa的外压,水即可透过膜。油水乳液分离研究发现,矿化膜能有效地分离一定范围的油水乳液,水通量大(>1800L·m-2·h-1),且膜容易用水清洗,展现出理想的油水乳液分离应用前景。

References

[1]  Chen W J, Peng J M, Su Y L, et al. Separation of oil/water emulsion using pluronic F127 modified polyethersulfone ultrafiltration membranes [J]. Separation and Purification Technology, 2009, 66: 591-597
[2]  Wan L S, Liu Z M, Xu Z K. Surface engineering of macroporous polypropylene membranes [J]. Soft Matter, 2009, 5: 1775-785
[3]  Zhao Z P, Li M S, Li N, et al. Controllable modification of polymer membranes by long-distance and dynamic low-temperature plasma flow: AA grafting penetrated through electrospun PP fibrous membranes [J]. Journal of Membrane Science, 2013, 440: 9-9
[4]  Kravets L, Gilman A, Yablokov M, et al. Surface and electrochemical properties of plasma-treated polypropylene track membrane [J]. Plasma Processes and Polymers, 2013, 10: 603-18
[5]  Zhong S F. Surface modification of polypropylene microporous membrane by atmospheric-pressure plasma induced N-vinyl-2-pyrrolidone graft polymerization [J]. Journal of Wuhan University of Technology: Materials Science Edition, 2012, 27: 301-309
[6]  Miao C L, Wang H. Research in surface modification and anti-fouling of polypropylene porous membrane [J]. Advanced Materials Research, 2013, 634: 353-356
[7]  Huang Y F, Liu Z. The Modification of polypropylene hollow fiber membrane by grafting with N,N'-methylene-bisac-rylamide on the surface [J]. Advanced Materials Research, 2013, 699: 783-788
[8]  Yu H Y, Zhou J, Gu J S, Yang S. Manipulating membrane permeability and protein rejection of UV-modified polypropylene macroporous membrane [J]. Journal of Membrane Science, 2010, 364: 203-210
[9]  Tan Q, Zhang K, Gu S, Ren J. Mineralization of surfactant functionalized multi-walled carbon nanotubes (MWNTs) to prepare hydroxyapatite/ MWNTs nanohybrid [J]. Applied Surface Science, 2009, 255: 7036-7039
[10]  Munro N H, Green D W, Dangerfield A, McGrath K M. Biomimetic mineralisation of polymeric scaffolds using a combined soaking and Kitano approach [J]. Dalton Transactions, 2011, 40: 9259-9268
[11]  Popescu D C, Leeuwen E N M, Rossi N A A, et al. Shaping amorphous calcium carbonate films into 2D model substrates for bone cell culture [J]. Angewandte Chemie -International Edition, 2006, 45: 1762-1767
[12]  Chen P C, Wan L S, Xu Z K. Bio-inspired CaCO3 coating for superhydrophilic hybrid membranes with highwater permeability [J]. Journal of Materials Chemistry, 2012, 22: 22727-22733
[13]  Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318: 426-430
[14]  Wang J, Yu M, Deming T J. Role of L-3, 4-dihydroxyphenylalanine in mussel adhesive proteins [J]. Journal of the American Chemical Society, 1999, 121: 5825-5826
[15]  Li B, Liu W, Jiang Z, et al. Ultrathin and stable active layer of dense composite membrane enabled by poly (dopamine) [J]. Langmuir, 2009, 25: 7368-7374
[16]  Chen Mingyi (陈铭忆), Zhang Yang (张扬), Wen Bianying (温变英). Hydrophilic modification on surface of polypropylene [J]. Acta Polymerica Sinica (高分子学报), 2013, 10: 1319-1324
[17]  Yang H C, Wu Q Y, Wan L S, Xu Z K. Polydopamine gradients by oxygen diffusion controlled autoxidation [J]. Chem. Commun., 2013, 49: 10522-10524
[18]  Yang Y F, Wan L S, Xu Z K. Surface hydrophilization of microporous polypropylene membrane by the interfacial crosslinking of polyethylenimine [J]. Journal of Membrane Science, 2009, 337: 70-80
[19]  Fan Rongyu (范荣玉), Zheng Ximing (郑细鸣), Lin Xing (林兴). Preparation and adsorption behavior of Cu(Ⅱ) ion-imprinted composite membranes via electrostatic assembly [J]. CIESC Journal (化工学报), 2014, 65 (8): 3039-3047
[20]  Wu X M, Wang L L, Wang Y, et al. Surface modification of polypropylene macroporous membrane by marrying RAFT polymerization with click chemistry [J]. Journal of Membrane Science, 2012, 421: 60-68
[21]  Sarah F, Arshad H, Nadeem I. Fabrication and characterization of microfiltration blended membranes [J]. Desalination and Water Treatment, 2014, 52: 1833-1840
[22]  Saffar A, Carreau P J, Ajji A, Kamal M R. Development of polypropylene microporous hydrophilic membranes by blending with PP-g-MA and PP-g-AA [J]. Journal of Membrane Science, 2014, 462: 50-61
[23]  Guo H F, Ulbricht M. Surface modification of polypropylene microfiltration membrane via entrapment of an amphiphilic alkyl oligoethyleneglycolether [J]. Journal of Membrane Science, 2010, 349: 312-320
[24]  Chen H, Lin Q, Xu Q, et al. Plasma activation and atomic layer deposition of TiO2 on polypropylene membranes for improved performances of lithium-ion batteries [J]. Journal of Membrane Science, 2014, 458: 217-224
[25]  Raveshiyan S, Yegani R, Pourabbas B, Tavakkoli A. Study on the fabrication of superhydrophobic microporous polypropylene flat membrane using in situ synthesis of modified fluorinated silica nano particles [J]. Advanced Materials Research, 2013, 829: 371-375
[26]  Deng H, Shen X C, Wang X M, Du C. Calcium carbonate crystallization controlled by functional groups: a mini-review [J]. Frontiers of Materials Science, 2013, 7: 62-68
[27]  Gao Y, Koumoto K. Bioinspired ceramic thin film processing: present status and future perspectives [J]. Crystal Growth & Design, 2005, 5: 1983-2017

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133