全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

掺杂Ce、Zr对CO2钙基吸附剂循环特性的影响

DOI: 10.11949/j.issn.0438-1157.20141071, PP. 612-617

Keywords: 氧空位,钙基吸附剂,吸附,二氧化碳捕集,转化率,稳定性

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用湿法混合-煅烧法将元素Ce、Zr掺杂到CO2钙基吸附剂中,利用热重分析仪(TGA)研究了24种改性钙基吸附剂吸附CO2的循环特性。研究发现:CeO2散布在CaO晶粒之间可抑制晶粒融合,对吸附剂烧结有一定的阻碍作用;CeO2可明显提高吸附剂在扩散控制阶段对CO2的吸附速率,原因在于CeO2中丰富的氧空位可促进CO2以离子迁移的方式穿过表面产物层到达内部与CaO反应;吸附剂中CeO2含量越高,稳定性越强;ZrO2与CaO高温化合成具有高塔曼温度的CaZrO3,均匀分散在CaO晶粒间,构成稳固的支撑骨架,有效抑制了吸附剂烧结。

References

[1]  Romano M C. Modeling the carbonator of a Ca-looping process for CO2 capture from power plant flue gas [J]. Chemical Engineering Science, 2012, 69 (1): 257-269
[2]  Wang J, Manovic V, Wu Y, Anthony E J. A study on the activity of CaO-based sorbents for capturing CO2 in clean energy processes [J]. Applied Energy, 2010, 87 (4): 1453-1458
[3]  Qiao Chunzhen (乔春珍), Wang Baoli (王宝利), Xiao Yunhan (肖云汉). Activity decline of Ca-based CO2 absorbent in repetitive calcination-carbonation [J]. CIESC Journal (化工学报), 2010, 61 (3): 720-724
[4]  Chen Hongwei (陈鸿伟), Zhao Zhenghui (赵争辉). Sequential SO2/CO2 capture using CaO-based sorbents reactivated by steam [J]. CIESC Journal (化工学报), 2012, 63 (8): 2566-2575
[5]  Anthony E J. Ca looping technology: current status, developments and future directions [J]. Greenhouse Gas Sci Technol., 2011, 1 (1): 36-47
[6]  Liu Wenqiang, Low N W, Feng B, et al. Calcium precursors for the production of CaO sorbents for multicycle CO2 capture [J]. Environ. Sci. Technol., 2010, 44: 841-847
[7]  Lu Hong, Khan Ataullah. Relationship between structural properties and CO2 capture performance of CaO-based sorbents obtained from different organometallic precursors [J]. Industrial & Engineering Chemistry, 2008, 47: 6216-6220
[8]  Kwang Bok Yi, Chang Hyun Ko, Jong-Ho Park. Improvement of the cyclic stability of high temperature CO2 absorbent by the addition of oxygen vacancy possessing material [J]. Catalysis Today, 2009, 146: 241-247
[9]  Judd M D, Pope M I. Formation and surface electron-emission properties of coatings [J]. J. Appl. Chem., 1970, 20: 384-388
[10]  Broda Marcin, Müller Christoph R. Sol-gel-derived, CaO-based, ZrO2-stabilized CO2 sorbents [J]. Fuel, 2014, 127: 94-100
[11]  Lu Hong, Khan Ataullah. Flame-made durable doped-CaO nanosorbents for CO2 capture [J]. Energy & Fuels, 2009, 23: 1093-1100
[12]  Chen Huichao (陈惠超), Zhao Changsui (赵长遂), Shen Peng (沈鹏). Effect of stream in flue gas on CO2 capture for calcium based sorbent [J]. CIESC Journal (化工学报), 2013, 64 (4): 1364-1372
[13]  Zhang Mingming (张明明), Peng Yunxiang (彭云湘). Preparation of ternary composite Ca-based material CaO-Ca3Al2O6-MgO for high-temperature CO2 capture [J]. CIESC Journal (化工学报), 2014, 65 (1): 227-236
[14]  Lu Hong, Smirniotis P G. Calcium oxide doped sorbents for CO2 uptake in the presence of SO2 at high temperatures [J]. Industrial & Engineering Chemistry Research, 2009, 48: 5454-5459
[15]  Reddy E P, Smirniotis P G. High-temperature sorbents for CO2 made of alkali metals doped on CaO supports [J]. Journal of Physical Chemistry B, 2004, 108 (23): 7794-7800
[16]  Bhatia S K, Perlmutter D D. Effect of the product layer on the kinetics of the CO2-limereaction [J]. AIChE Journal, 1983, 29 (1): 79-86
[17]  Dudek Magdalena. Electrical properties of stoichiometric and non-stoichiometric calcium zirconate [J]. Solid State Ionics, 2003, 157: 183-187
[18]  Guo Mingnü (郭名女). Cyclic reaction characteristic of co-capture CO2/SO2 and kinetic study for synthesized anti-sintering calcium-based sorbents[D]. Chongqing: Chongqing University, 2011
[19]  Manovic V, Anthony E J, Grasa G, Abanades J C. CO2 looping cycle performance of a high-purity limestone after thermal activation/doping [J]. Energy Fuel, 2008, 22 (5): 3258-3264
[20]  Wu S F, Lan L Q. A kinetic model of nano-CaO reactions with CO2 in a sorption complex catalyst [J]. AIChE Journal, 2012, 58 (5): 1570-1577

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133