全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

CPFD在细颗粒料仓下料中的应用

DOI: 10.11949/j.issn.0438-1157.20141263, PP. 512-521

Keywords: 计算颗粒流体力学,数值模拟,颗粒流,料仓结构,粉体

Full-Text   Cite this paper   Add to My Lib

Abstract:

借助计算颗粒流体力学(CPFD)的数值模拟方法,研究了细颗粒玻璃微珠在不同结构料仓内的下料特性,获得了料仓出口直径和半锥角对颗粒下料流动的影响。在实验室可视化下料平台开展了验证实验,模拟结果与实验结果吻合较好。模拟结果表明:下料流率与料仓出口直径2.5次方呈正比;料仓半锥角增大,下料流型从质量流过渡至漏斗流。CPFD模拟给出了料仓下料过程的细节信息,并获得了料仓结构对颗粒流动形态转变的临界面相对高度的影响。

References

[1]  Ma Sheng (马胜), Guo Xiaolei (郭晓镭), Gong Xin (龚欣), Huang Wanjie (黄万杰), Lu Haifeng (陆海峰),Liu Kai (刘凯). Flow regime of pulverized coal in dense-phase pneumtic conveying system [J]. CIESC Journal (化工学报), 2010, 61 (6): 1415-1422
[2]  Ferrari G, Poletto M. The particle velocity field inside a two-dimensional aerated hopper [J]. Powder Technology, 2002, 123: 242-253
[3]  Anand A, Curtis J S, Wassgren C R, Hancock B C, Ketterhagen W R. Predicting discharge dynamics from a rectangular hopper using the discrete element method (DEM) [J]. Chemical Engineering Science, 2008, 63 (24): 5821-5830
[4]  González-Montellano C, Gallego E, Ramírez-Gómez á, Ayuga F. Three dimensional discrete element models for simulating the filling and emptying of silos: analysis of numerical results [J]. Computers & Chemical Engineering, 2012, 40: 22-32
[5]  Balevi?ius R, Ka?ianauskas R, Mróz I Z. Sielamowicz. Analysis and DEM simulation of granular material flow patterns in hopper models of different shapes [J]. Advanced Powder Technology, 2011, 22 (2): 226-235
[6]  Fickie K E, Mehrabi R, Jackson R. Density variations in a granular material flowing from a wedge-shaped hopper [J]. AIChE Journal, 1989, 35 (5): 853-855
[7]  Gentzler M, Tardos G I. Measurement of velocity and density profiles in discharging conical hoppers by NMR imaging [J]. Chemical Engineering Science, 2009, 64 (22): 4463-4469
[8]  Sielamowicz I, B?o?ski S, Kowalewski A T. Digital particle image velocimetry (DPIV) technique in measurements of granular material flows, part 2 of 3-converging hoppers [J]. Chemical Engineering Science, 2006, 61 (16): 5307-5317
[9]  Donsi G, Ferrari G, Poletto M. Distribution of gas pressure inside a hopper discharging fine powders [J]. Chemical Engineering Science, 1997, 52 (23): 4291-4302
[10]  Weir G J. A mathematical model for dilating, non-cohesive granular flows in steep-walled hoppers [J]. Chemical Engineering Science, 2004, 59 (1): 149-161
[11]  Hirshfeld D, Rapaport D C. Granular flow from a silo discrete-particle simulations in three dimensions [J]. The European Physical Journal, 2001, 4: 193-199
[12]  Ketterhagen W R, Curtis J S, Wassgren C R, Hancock B C. Predicting the flow mode from hoppers using the discrete element method [J]. Powder Technology, 2009, 195 (1): 1-10
[13]  Abbasi A, Islam M A, Ege P E, de Lasa H I. CPFD flow pattern simulation in downer reactors [J]. AIChE Journal, 2013, 59 (5): 1635-1647
[14]  Cheng Huixing (程慧星), Gong Xin (龚欣), Guo Xiaolei (郭晓镭), Dai Zhenghua (代正华), Chen Feng (陈锋), Xiong Lang (熊浪). Mathematicle model analysis of powder flow in hopper [J]. Chemical Engineering (China) (化学工程), 2005, 33 (3): 33-35
[15]  Andrews M J, O'rourke P J. The multiphase particle-in-cell (MP-PIC) method for dense particle flow [J]. Int. J. Multiphase Flow, 1996, 22 (2): 379-402
[16]  Zhang Ruiqing (张瑞卿), Yang Hairui (杨海瑞), Lü Junfu (吕俊复). Application of CPFD approach on gas-solid flow and combustion in industrial CFB boilers [J]. Proceedings of the CSEE (中国电机工程学报), 2013, 33 (23): 75-82
[17]  Snider D M. Three fundamental granular flow experiments and CPFD predictions [J]. Powder Technology, 2007, 176 (1): 36-46
[18]  Snider D M. An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows [J]. Journal of Computational Physics, 2001, 170 (2): 523-549
[19]  Zheng Lijiao (郑丽娇), Guo Xiaolei (郭晓镭), Dai Zhenghua (代正华), Guo Yunzhou (郭云舟), Xiao Weiguo (肖为国), Huang Wanjie (黄万杰),Gong Xin (龚欣). Flow characteristic of pulverized coal from aeration silo [J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2007, 58 (9): 2375-2381
[20]  Karimipour S, Pugsley T. Application of the particle in cell approach for the simulation of bubbling fluidized beds of Geldart A particles [J]. Powder Technology, 2012, 220: 63-69
[21]  Harris S E, Crighton D G. Solitons, solitary waves, and voidage disturbances in gas-fluidized beds [J]. J. Fluid Mech., 1994, 266: 243-276
[22]  Auzerais F M, Jackson R, Russel W B. The resolution of shocks and the effects of compressible sediments in transient settling [J]. Journal Fluid Mech., 1988, 195: 437-462
[23]  Geldart D. Types of gas fluidization [J]. Powder Technology,1973, 7: 285-292
[24]  Nedderman R M, Tuzun U, Savage, S B, Houlsby G T. Review article number 10:the flow of granular material: discharge rates from hopper [J]. Chemical Engineering Science, 1982, 37 (11): 1597-1609
[25]  Lu H F, Guo X L, Zhao W, Gong X, Lu J. Experimental and CPFD numerical study on hopper discharge [J]. Industrial & Engineering Chemistry Research, 2014, 53: 12160-12169
[26]  Spink C D, Nedderman R M. Gravity discharge rate of fine particles from hoppers [J]. Powder Technology, 1978, 21: 245-261
[27]  Lu Haifeng (陆海峰), Guo Xiaolei (郭晓镭), Tao Shunlong (陶顺龙), Gong Xin (龚欣), Lu Jun (鲁军). Application of electrical capacitance tomography in hopper discharge of pulverized coal [J]. CIESC Journal (化工学报), 2014, 65 (2): 422-428

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133