全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2009 

基于自适应量子蚁群算法的石脑油裂解炉故障诊断

, PP. 401-408

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对实际生产过程中缺乏故障数据,采用适合小样本问题的支持向量机对石脑油裂解炉进行故障诊断。为了消除高维数据及系统噪声对故障诊断的干扰,将量子编码引入蚁群算法,提出一种新的自适应量子蚁群算法进行故障特征选择以进一步提高诊断性能。数值仿真实验结果显示,提出的自适应量子蚁群算法具有更好的全局寻优性能;对石脑油裂解炉传感器故障的诊断结果表明自适应量子蚁群算法能快速、准确地搜索到关键故障特征,有效地提高了支持向量机故障诊断的正确率和鲁棒性。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133