Muldoon M J, Aki S N, Anderson J L, Dixon J K, Brennecke J F. Improving carbon dioxide solubility in ionic liquids[J].Journal of Physical Chemistry B, 2007, 111: 9001-9009
[2]
Bara J E, Gabriel C J, Lessmann S, Carlisle T K, Finotello A, Gin D L, Noble R D. Enhanced CO2 separation selectivity in oligo(ethylene glycol) functionalized room-temperature ionic liquids[J].Industrial & Engineering Chemistry Research, 2007, 46: 5380-5386
[3]
Mahurin S M, Lee J S, Baker G A, Luo H M, Dai S, Performance of nitrile-containing anions in task-specific ionic liquids for improved CO2/N2 separation[J]. Journal of Membrane Science, 2010, 353: 177-183
[4]
Fukumoto K, Yoshizawa M, Ohno H.Room temperature ionic liquids from 20 natural amino acids[J].Journal of the American Chemical Society, 2005, 127: 2398-2399
[5]
Zhang J M, Zhang S J, Dong K, Zhang Y Q, Shen Y Q, L? X M. Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids [J].Chemistry-A European Journal, 2006, 12: 4021-4026
[6]
Huddleston J G, Visser A E, Reichert W M, Willauer H D, Broker G A, Rogers R D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation[J].Green Chemistry, 2001, 3: 156-164
[7]
Camper D, Bara J, Koval C, Noble R. Bulk-fluid solubility and membrane feasibility of Rmim-based room-temperature ionic liquids[J]. Industrial & Engineering Chemistry Research, 2006, 45: 6279-6283
[8]
Carlisle T K, Bara J E, Gabriel C J, Noble R D, Gin D L. Interpretation of CO2 solubility and selectivity in nitrile-functionalized room-temperature ionic liquids using a group contribution approach[J]. Industrial & Engineering Chemistry Research, 2008, 47: 7005-7012
[9]
Noda A. Pulsed-gradient spin-echo 1H and 19F NMR ionic diffusion coefficient,viscosity,and ionic conductivity of non-chloroaluminate room-temperature ionic liquids[J]. Journal of Physical Chemistry B,2001, 105: 4603-4610
[10]
Bara J E, Carlisle T K, Gabriel C J, Camper D, Finotello A, Gin D L, Noble R D. Guide to CO2 separations in imidazolium-based room-temperature ionic liquids[J]. Industrial & Engineering Chemistry Research, 2009, 48: 2739-2751
[11]
Okoturo O O, VanderNoot T J. Temperature dependence of viscosity for room temperature ionic liquids [J]. Journal of Electroanalytical Chemistry, 2004, 568:167-181
[12]
Jacquemin J, Gomes M C, Husson P, Majer V. Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperature 283 K and 343 K and at pressure close to atmosphic[J]. The Journal of Chemical Thermodynamics, 2006, 38: 490-502
[13]
Ahosseini A, Scurto A M. Viscosity of imidazolium-based ionic liquids at elevated pressures: cation and anion effects[J]. International Journal of Thermophysics, 2008, 29: 1222-1243
[14]
Harris K R, Kanakubo M, Woolf L A. Temperature and pressure dependence of the viscosity of the ionic liquids 1-methyl-3-octylimidazolium hexafluorophosphate and 1-methyl-3-octylimidazolium tetrafluoroborate [J]. Journal of Chemical and Engineering Data, 2006, 51: 1161-1167
[15]
Longinotti M P, Alvarez J L, Japas M L. Advantages of ion-based mole fractions for describing phase equilibria in ionic liquids:application to gas solubility[J]. Journal of Physical Chemistry B, 2009, 113: 3461-3468
[16]
Scovazzo P. Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research [J]. Journal of Membrane Science, 2009, 343: 199-211
[17]
Blanchard L A, Hancu D, Beckman E J, Brennecke J F. Green processing using ionic liquids and CO2[J]. Nature, 1999, 399: 28-29
[18]
Park Y I, Kim B S, Byun Y H, Lee S H, Lee E W. Preparation of supported ionic liquid membranes (SILMs) for the removal of acidic gases from crude natural gas[J]. Desalination, 2009, 236: 342-348
[19]
Scovazzo P, Kieft J, Finan D A, Koval C, DuBois D, Noble R.Gas separations using non-hexafluorophosphate [PF6]-anion supported ionic liquid membranes [J].Journal of Membrane Science, 2004, 238: 57-63
[20]
Scovazzo P, Havard D, McShea M, Mixon S, Morgan D. Long-term, continuous mixed-gas dry fed CO2/CH4 and CO2/N2 separation performance and selectivities for room temperature ionic liquid membranes[J].Journal of Membrane Science, 2009, 327: 41-48
[21]
Bates E D, Mayton R D, Ntai I, Davis J H.CO2 capture by a task-specific ionic liquid[J].Journal of the American Chemical Society, 2002, 124: 926-927
[22]
Myers C, Pennline H, Luebke D, Ilconich J, Dixon J K, Maginn E J, Brennecke J F. High temperature separation of carbon dioxide/hydrogen mixtures using facilitated supported ionic liquid membranes [J].Journal of Membrane Science, 2008, 322: 28-31
[23]
Baltus R E, Culbertson B H, Dai S, Luo H, DePaoli D W. Low-pressure solubility of carbon dioxide in room-temperature ionic liquids measured with a quartz crystal microbalance [J].Journal of Physical Chemistry B, 2004, 108: 721-727