全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2013 

微尺度下非均相反应的研究进展

DOI: 10.3969/j.issn.0438-1157.2013.01.019, PP. 165-172

Keywords: 微化工系统,微反应器,非均相反应

Full-Text   Cite this paper   Add to My Lib

Abstract:

微结构反应器(微反应器)是微化工系统的核心装备之一,是实现化工过程强化的重要技术基础。从微尺度非均相反应过程的基本原理出发,系统综述了近十年来微尺度下多相流动、分散和传递等方面的相关报道,系统地介绍了一些典型微尺度非均相反应过程,分析总结了微尺度反应技术的优势和特点,并对未来微尺度反应技术的发展方向提出了展望。

References

[1]  Hessel V, Lowe H.Microchemical engineering:components, plant concepts user acceptance(Ⅰ)[J].Chem. Eng. Technol., 2003,26(1):13-24
[2]  Hessel V, Lowe H.Microchemical engineering:components, plant concepts, user acceptance(Ⅱ)[J].Chem.Eng.Technol., 2003,26(4):391-408
[3]  Hessel V, Lowe H.Microchemical engineering:components, plant concepts, user acceptance(Ⅲ)[J].Chem.Eng.Technol.,2003,26(5):531-544
[4]  Hartman R L, Jensen K F.Microchemical systems for continuous-flow synthesis[J].Lab Chip, 2009,9(17):2495-2507
[5]  Teh S Y, Lin R, Hung L H, Lee A P.Droplet microfluidics[J].Lab Chip, 2008,8(2):198-220
[6]  Di Carlo D.Inertial microfluidics[J].Lab Chip,2009,9(21):3038-3046
[7]  Lorber N, Sarrazin F, Guillot P, Panizza P, Colin A, Pavageau B, Hany C, Maestro P, Marre S, Delclos T, Aymonier C, Subra P, Prat L, Gourdon C, Mignard E.Some recent advances in the design and the use of miniaturized droplet-based continuous process:applications in chemistry and high-pressure microflows[J].Lab Chip,2011,11(5):779-787
[8]  Song H, Chen D L, Ismagilov R F.Reactions in droplets in microflulidic channels[J].Angew.Chem.Int.Edit., 2006,45(44):7336-7356
[9]  Teekateerawej S, Nishino J, Nosaka Y.Design and evaluation of photocatalytic micro-channel reactors using TiO2-coated porous ceramics[J].J.Photoch.Photobio.A, 2006,179(3):263-268
[10]  Gorke O, Pfeifer P, Schubert K.Highly selective methanation by the use of a microchannel reactor[J].Catal.Today, 2005,110(1/2):132-139
[11]  Ronnholm M R, Carucci J, Arve K, Eranen K, Salmi T.ANN modeling applied to NOx reduction with octane in a new microreactor[J].Top.Catal., 2007,42/43(1/2/3/4):195-198
[12]  Zanfir M, Gavriilidis A, Wille C, Hessel V.Carbon dioxide absorption in a falling film microstructured reactor:experiments and modeling[J].Ind.Eng.Chem.Res., 2005,44(6):1742-1751
[13]  Srinivas S, Dhingra A, Im H, Gulari E.A scalable silicon microreactor for preferential CO oxidation:performance comparison with a tubular packed-bed microreactor[J].Appl.Catal.A—Gen.,2004,274(1/2):285-293
[14]  Xu J H, Li S W, Tan J, Wang Y J, Luo G S.Preparation of highly monodisperse droplet in a T-junction microfluidic device[J].AIChE J., 2006,52(9):3005-3010
[15]  Xu J H, Li S, Chen G G, Luo G S.Formation of monodisperse microbubbles in a microfluidic device[J].AIChE J.,2006,52(6):2254-2259
[16]  Tice J D, Lyon A D, Ismagilov R F.Effects of viscosity on droplet formation and mixing in microfluidic channels[J].Anal.Chim.Acta, 2004,507(1):73-77
[17]  Wang K, Lu Y C, Xu J H, Luo G S.Determination of dynamic interfacial tension and its effect on droplet formation in the T-shaped microdispersion process[J].Langmuir, 2009,25(4):2153-2158
[18]  Wang K, Lu Y C, Xu J H, Tan J, Luo G S.Generation of micromono dispersed droplets and bubbles in the capillary embedded T-junction microfluidic devices[J].AIChE J., 2011,57(2):299-306
[19]  Ge Z W, Wang W, Yang C.Towards high concentration enhancement of microfluidic temperature gradient focusing of sample solutes using combined AC and DC field induced Joule heating[J].Lab Chip, 2011,11(7):1396-1402
[20]  Xu J H, Li S W, Tan J, Wang Y J, Luo G S.Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device[J].Langmuir, 2006,22(19):7943-7946
[21]  Zhao C X, Middelberg A.Two-phase microfluidic flows[J].Chem.Eng.Sci., 2011,66(7):1394-1411
[22]  Xu J H, Li S W, Tan J, Luo G S.Correlations of droplet formation in T-junction microfluidic devices:from squeezing to dripping[J].Microfluid.Nanofluid., 2008,5(6):711-717
[23]  Wang K, Lu Y C, Xu J H, Luo G S.Droplet generation in micro-sieve dispersion device[J].Microfluid. Nanofluid., 2011,10(5):1087-1095
[24]  Nisisako T, Torii T.Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles[J].Lab Chip, 2008,8(2):287-293
[25]  Yang L, Wang K, Tan J, Lu Y C, Luo G S.Experimental study of microbubble coalescence in a T-junction microfluidic device[J].Microfluid.Nanofluid.,2012,12(5):715-722
[26]  Christopher G F, Bergstein J, End N B, Poon M, Nguyen C, Anna S L.Coalescence and splitting of confined droplets at microfluidic junctions[J].Lab Chip, 2009,9(8):1102-1109
[27]  Tan Y C, Ho Y L, Lee A P.Droplet coalescence by geometrically mediated flow in microfluidic channels[J].Microfluid.Nanofluid., 2007,3(4):495-499
[28]  Fu T T, Funfschilling D, Ma Y, Li H Z.Scaling the formation of slug bubbles in microfluidic flow-focusing devices[J].Microfluid.Nanofluid., 2010,8(4):467-475
[29]  Fu T T, Ma Y G, Funfschilling D, Li H Z.Gas-liquid flow stability and bubble formation in non-Newtonian fluids in microfluidic flow-focusing devices[J].Microfluid. Nanofluid., 2011,10(5):1135-1140
[30]  Wang W, Xie R, Ju X J, Luo T, Liu L, Weitz D A, Chu L Y.Controllable microfluidic production of multicomponent multiple emulsions B-3915-2009[J].Lab Chip, 2011,11(9):1587-1592
[31]  Chu L Y, Utada A S, Shah R K, Kim J W, Weitz D A.Controllable monodisperse multiple emulsions[J].Angew.Chem.Int.Edit., 2007,46(47):8970-8974
[32]  Oskooei S, Sinton D.Partial wetting gas-liquid segmented flow microreactor[J].Lab Chip, 2010,10(13):1732-1734
[33]  Marre S, Aymonier C, Subra P, Mignard E.Dripping to jetting transitions observed from supercritical fluid in liquid microcoflows[J].Appl.Phys.Lett., 2009,95:13410513
[34]  Wang L Q, Fan J.Nanofluids research:key issues[J].Nanoscale Res.Lett., 2010,5(8):1241-1252
[35]  Sivasamy J, Wong T N, Nguyen N T, Kao L.An investigation on the mechanism of droplet formation in a microfluidic T-junction[J].Microfluid.Nanofluid., 2011,11(1):1-10
[36]  Galusinski C, Vigneaux P.Level-Set method and stability condition for curvature-driven flows[J].Cr.Math., 2007,344(11):703-708
[37]  Wang W T, Liu Z, Jin Y, Cheng Y.LBM simulation of droplet formation in micro-channels[J].Chem.Eng.J., 2011,173(3):828-836
[38]  Glasgow I, Aubry N.Enhancement of microfluidic mixing using time pulsing[J].Lab Chip, 2003,3(2):114-120
[39]  Tanthapanichakoon W, Aoki N, Matsuyama K, Mae K. Design of mixing in microfluidic liquid slugs based on a new dimensionless number for precise reaction and mixing operations[J].Chem.Eng.Sci.,2006,61(13):4220-4232
[40]  Li S W, Xu J H, Wang Y J, Luo G S.Mesomixing scale controlling and its effect on micromixing performance[J].Chem.Eng.Sci.,2007,62(13):3620-3626
[41]  Tung K Y, Li C C, Yang J T.Mixing and hydrodynamic analysis of a droplet in a planar serpentine micromixer[J].Microfluid.Nanofluid.,2009,7(4):545-557
[42]  Lim C Y, Lam Y C.Analysis on micro-mixing enhancement through a constriction under time periodic electroosmotic flow[J].Microfluid.Nanofluid.,2012,12(1/2/3/4):127-141
[43]  Wang S S, Huang X Y, Yang C.Mixing enhancement for high viscous fluids in a microfluidic chamber A-3837-2011[J].Lab Chip,2011,11(12):2081-2087
[44]  Su Y H, Chen G W, Zhao Y C, Yuan Q.Intensification of liquid-liquid two-phase mass transfer by gas agitation in a microchannel[J].AIChE J.,2009,55(8):1948-1958
[45]  Garstecki P, Fischbach M A, Whitesides G M.Design for mixing using bubbles in branched microfluidic channels[J].Appl.Phys.Lett., 2005,86:24410824
[46]  Lee J, Mudawar I.Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications(Ⅱ):Heat transfer characteristics[J].Int.J.Heat Mass Tran., 2005,48(5):941-955
[47]  Wang K, Lu Y C, Shao H W, Luo G S.Heat-transfer performance of a liquid-liquid microdispersed system[J].Ind.Eng.Chem.Res.,2008,47(23):9754-9758
[48]  Zhao Y C, Chen G W, Yuan Q.Liquid-liquid two-phase mass transfer in the T-junction microchannels[J].AIChE J.,2007,53(12):3042-3053
[49]  Tan J, Lu Y C, Xu J H, Luo G S.Mass transfer characteristic in the formation stage of gas-liquid segmented flow in microchannel[J].Chem.Eng.J., 2012,185:314-320
[50]  Tan J, Lu Y C, Xu J H, Luo G S.Mass transfer performance of gas-liquid segmented flow in microchannels[J].Chem.Eng.J.,2012,181:229-235
[51]  Xu J H, Tan J, Li S W, Luo G S.Enhancement of mass transfer performance of liquid-liquid system by droplet flow in microchannels[J].Chem.Eng.J., 2008,141(1/2/3):242-249
[52]  Shao H W, Lu Y C, Wang K, Luo G S.An experimental study of liquid-liquid microflow pattern maps accompanied with mass transfer[J].Chinese J.Chem.Eng., 2012,20(1):18-26
[53]  Xu J H, Dong P F, Zhao H, Tostado C P, Luo G S.The dynamic effects of surfactants on droplet formation in coaxial microfluidic devices[J].Langmuir,2012,28(25):9250-9258
[54]  Yoshida J, Nagaki A, Iwasaki T, Suga S.Enhancement of chemical selectivity by microreactors[J].Chem. Eng. Technol., 2005,28(3):259-266
[55]  Zhai X L, Ding S, Cheng Y H, Jin Y, Cheng Y.CFD simulation with detailed chemistry of steam reforming of methane for hydrogen production in an integrated micro-reactor[J].Int.J.Hydrogen Energ., 2010,35(11SI):5383-5392
[56]  Wang K, Lu Y C, Shao H W, Luo G S.Improving selectivity of temperature-sensitive exothermal reactions with microreactor[J].Ind.Eng.Chem.Res.,2008,47(14):4683-4688
[57]  Wang K, Lu Y C, Xu J H, Gong X C, Luo G S.Reducing side product by enhancing mass-transfer rate[J].AIChE J.,2006,52(12):4207-4213
[58]  Zhang J S, Wang K, Lu Y C, Luo G S.Beckmann rearrangement in a microstructured chemical system for the preparation of e-caprolactam[J].AIChE J., 2012,58(3):925-931
[59]  Tan J, Zhang J S, Lu Y C, Xu J H, Luo G S.Process intensification of catalytic hydrogenation of ethylanthraquinone with gas-liquid microdispersion[J].AIChE J.,2012,58(5):1326-1335
[60]  de Mas N, Gunther A, Schmidt M A, Jensen K F. Increasing productivity of microreactors for fast gas-liquid reactions:the case of direct fluorination of toluene[J].Ind.Eng.Chem.Res., 2009,48(3):1428-1434
[61]  Shen J N, Zhao Y C, Chen G W, Yuan Q.Investigation of nitration processes of iso-octanol with mixed acid in a microreactor[J].Chinese J.Chem.Eng.,2009,17(3):412-418
[62]  Illg T, Lob P, Hessel V.Flow chemistry using milli- and microstructured reactors—from conventional to novel process windows[J].Bioorgan.Med.Chem., 2010,18(11):3707-3719
[63]  Wang K, Wang Y J, Chen G G, Luo G S, Wang J D.Enhancement of mixing and mass transfer performance with a microstructure minireactor for controllable preparation of CaCO3 nanoparticles[J].Ind. Eng. Chem.Res.,2007,46(19):6092-6098
[64]  Wang Y J, Zhang C L, Bi S W, Luo G S.Preparation of ZnO nanoparticles using the direct precipitation method in a membrane dispersion micro-structured reactor[J].Powder Technol., 2010,202(1/2/3):130-136
[65]  Frenz L, El Harrak A, Pauly M, Begin-Colin S, Griffiths A D, Baret J C.Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles[J].Angew. Chem. Int.Edit.,2008,47(36):6817-6820
[66]  Cottam B F, Krishnadasan S, Demello A J, Demello J C, Shaffer M.Accelerated synthesis of titanium oxide nanostructures using microfluidic chips[J].Lab Chip,2007,7(2):167-169
[67]  Wang Y J, Xu D Q, Sun H T, Luo G S.Preparation of pseudoboehmite with a large pore volume and a large pore size by using a membrane-dispersion microstructured reactor through the reaction of CO2 and a NaAlO2 solution[J].Ind.Eng.Chem.Res.,2011,50(7):3889-3894
[68]  Du L, Tan J, Wang K, Lu Y C, Luo G S.Controllable preparation of SiO2 nanoparticles using a microfiltration membrane dispersion microreactor[J].Ind. Eng. Chem. Res., 2011,50(14):8536-8541
[69]  Li S W, Xu J H, Wang Y J, Luo G S.Modeling of nano-particle precipitation process in a membrane dispersion micro-structured reactor[J].Powder Technol., 2009,195(3):213-220
[70]  Yang Q, Wang J X, Shao L, Wang Q A, Guo F, Chen J F, Gu L, An Y T.High throughput methodology for continuous preparation of hydroxyapatite nanoparticles in a microporous tube-in-tube microchannel reactor[J].Ind. Eng. Chem.Res.,2010,49(1):140-147
[71]  Chan E M, Alivisatos A P, Mathies R A.High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets[J].J.Am.Chem.Soc.,2005,127(40):13854-13861
[72]  Nakamura H, Tashiro A, Yamaguchi Y, Miyazaki M, Watari T, Shimizu H, Maeda H.Application of a microfluidic reaction system for CdSe nanocrystal preparation:their growth kinetics and photoluminescence analysis[J].Lab Chip, 2004,4(3):237-240
[73]  Liu Z D, Lu Y C, Yang B D, Luo G S.Controllable preparation of poly(butyl acrylate)by suspension polymerization in a coaxial capillary microreactor[J].Ind.Eng.Chem.Res.,2011,50(21):11853-11862
[74]  Zourob M, Mohr S, Mayes A G, Macaskill A, Perez-Moral N, Fielden P R, Goddard N J.A micro-reactor for preparing uniform molecularly imprinted polymer beads[J].Lab Chip,2006,6(2):296-301
[75]  Nie Z H, Li W, Seo M, Xu S Q, Kumacheva E.Janus and ternary particles generated by microfluidic synthesis:design, synthesis, and self-assembly[J].J. Am. Chem. Soc.,2006,128(29):9408-9412
[76]  Wan J, Bick A, Sullivan M, Stone H A.Controllable microfluidic production of microbubbles in water-in-oil emulsions and the formation of porous microparticles[J].Adv.Mater., 2008,20(17):3314
[77]  Chu L Y, Kim J W, Shah R K, Weitz D A.Monodisperse thermoresponsive microgels with tunable volume-phase transition kinetics[J].Adv.Funct.Mater.,2007,17(17):3499-3504
[78]  Zhang L, Geng M, Teng P, Zhao D, Lu X, Li J X. Ultrasound-promoted intramolecular direct arylation in a capillary flow microreactor[J].Ultrason.Sonochem., 2012,19(2):250-256
[79]  Shore G, Morin S, Organ M G.Catalysis in capillaries by Pd thin films using microwave-assisted continuous-flow organic synthesis[J].Angew.Chem.Int.Edit.,2006,45(17):2761-2766
[80]  Svoboda M, Slouka Z, Lindner J, Snita D.Direct evidence of concentration and potential profiles in the electrolyte diode[J].Chem.Eng.J.,2008,135(S1):S203-S209

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133