全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
核农学报  2012 

甘蔗抗逆基因工程育种研究进展

, PP. 471-477

Keywords: 甘蔗,抗逆性,基因工程,转基因,研究进展

Full-Text   Cite this paper   Add to My Lib

Abstract:

病虫害、干旱、低温是甘蔗生产中主要的生物和非生物胁迫因素,给甘蔗生产造成巨大损失。提高甘蔗抗逆性是甘蔗育种的重要目标。基因工程技术在作物遗传改良中应用广泛,为甘蔗抗逆育种提供了有效途径。本文概述了转基因技术在甘蔗抗病虫害、抗旱、抗寒方面的研究进展,并提出了该领域尚存在的一些问题及其应用前景展望。

References

[1]  Menossi M, Silva-Filho M C, Vincentz M, Van-Sluys M A, Souza G M. Sugarcane functional genomics: gene discovery for agronomic trait development [J]. Int J Plant Genomics, 2008: 1-11
[2]  游建华, 李 松, 何为中, 莫磊兴, 曾 慧, 刘红坚.60Co γ辐射诱变育成甘蔗新品种桂糖22号 [J]. 核农学报, 2006, 20 (2): 95-98
[3]  李 松, 游建华, 余坤兴, 刘红坚, 韦 坚, 刘丽敏, 淡 明, 谭 芳, 卢曼曼. 甘蔗新品种桂辐98-296的选育 [J]. 核农学报, 2010, 24(6): 1177-1181
[4]  Gilbert R A, Gallo-Meagher M, Comstock J C, Miller J D, Jain M, Abouzid A. Agronomic evaluation of sugarcane lines transformed for resistance to sugarcane mosaic virus Strain E [J]. Crop Sci, 2005, 45: 2060-2067
[5]  Gilbert R A, Glynn N C, Comstock J C, Davis M J. Agronomic performance and genetic characterization of sugarcane transformed for resistance to sugarcane yellow leaf virus [J]. Field Crops Res, 2009, 111:36-46
[6]  Rangel M P, Gomez L, Victoria J I, Angel F. Transgenic plants of CC 84-75 resistant to the virus associated with the sugarcane yellow leaf disease [J]. Proc Intl Soc Sugar Cane Technol, 2005, 25: 564-571
[7]  Morroni M, Thompson J R, Tepfer M. Twenty years of transgenic plants resistant to cucumber mosaic virus [J]. Mol Plant Microb Interact, 2008, 21:675-684
[8]  Zhang Z Y, Fu F L, Gou L, Wang H G, Li W C. RNA interference-based transgenic maize resistant to maize dwarf mosaic virus [J]. J Plant Biol, 2010, 53: 297-305
[9]  Srikanth J, Subramonian N, Premachandran M N. Advances in transgenic research for insect resistance in sugarcane [J]. Tropical Plant Biology, 2011, 4(1): 52-61
[10]  Christy L A, Arvinth S, Saravanakumar M, Kanchana M, Mukunthan N, Srikanth J, Thomas G, Subramonian N. Engineering sugarcane cultivars with bovine pancreatic trypsin inhibitor (aprotinin) gene for protection against top borer ( Scirpophaga excerptalis Walker) [J]. Plant Cell Rep, 2009, 28: 175-184
[11]  Arvinth S, Arun S, Selvakesavan R K, Srikanth J, Mukunthan N, Kumar P A, Premachandran M N, Subramonian N. Genetic transformation and pyramiding of aprotinin-expressing sugarcane with cry1Ab for shoot borer ( Chilo infuscatellus ) resistance [J]. Plant Cell Reports, 2010, 29(4): 383-395
[12]  Weng L X, Deng H H, Xu J L, Li Q, Zhang Y Q, Jiang Z D, Li Q W, Chen J W, Zhang L H. Transgenic sugarcane plants expressing high levels of modified cry1Ac provide effective control against stem borers in field trials [J]. Transgenic Research, 2011, 20(4): 759-772
[13]  陈平华, 林美娟, 薛志平, 陈如凯. GNA基因遗传转化甘蔗研究[J].江西农业大学学报, 2004, 26(5): 741-748
[14]  Gatehouse J. Biotechnological prospects for engineering insect resistant plants [J]. Plant Physiol, 2008, 146: 881-887
[15]  Christou P, Capell T, Kohli A, Gatehouse J, Gatehouse A. Recent developments and future prospects in insect pest control in transgenic crops [J]. Trends Plant Sci, 2006, 11: 302-308
[16]  Yang S, Gu T T, Pan C, Feng Z, Ding J, Hang Y, Cheng J Q, Tian D. Genetic variation of NBS-LRR class resistance genes in rice lines [J]. Theoretical and Applied Genetics, 2008, 116: 165-177
[17]  Zhang H, Guan H, Li J, Zhu J, Xie C, Zhou Y, Duan X, Yang T, Sun Q, Liu Z. Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat ( Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2010, 121(8): 1613-1621
[18]  Qi L L, Hulke B S, Vick B A, Gulya T J. Molecular mapping of the rust resistance gene R4 to a large NBS-LRR cluster on linkage group 13 of sunflower [J]. Theoretical and Applied Genetics, 2011, 123(2): 351-358
[19]  Bhatnagar-Mathur P, Vadez V, Sharma K K. Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects [J]. Plant Cell Rep, 2008, 27:411-424
[20]  Hounsa C G, Brandt E V, Thevelein J, Hohmann S, Prior B A. Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress [J]. Microbiology, 1998, 144: 671-680
[21]  Zhang S Z, Yang B P, Feng C L, Chen R K, Luo J P, Cai W W, Liu F H. Expression of the Grifola frondosa trehalose synthase gene and improvement of drought-tolerance in sugarcane ( Saccharum officinarum L.) [J]. J Integr Plant Biol, 2006, 48:453-459
[22]  Wu Y, Zhou H, Que Y X, Chen R K, Zhang M Q. Cloning and identification of promoter Prd29A and its application in sugarcane drought resistance [J]. Sugar Tech, 2008, 10(1): 36-41
[23]  刘金仙, 阙友雄, 郭晋隆, 许莉萍, 徐景升, 陈如凯. 甘蔗S-腺苷蛋氨酸脱羧酶基因Sc-SAMDC 的克隆和表达分析 [J]. 中国农业科学,2010,43(7):1448-1457
[24]  Iskandar H M, Casu R E, Fletcher A T, Schmidt S, Xu J, Maclean D J, Manners J M, Bonnett G D. Identification of drought-response genes and a study of their expression during sucrose accumulation and water deficit in sugarcane culms [J]. BMC Plant Biology, 2011, 11:12-25
[25]  Rodrigues F A, Da Graca J P, De Laia M L, Nhani-jr A, Galbiati J A, Ferro M I T, Ferro J A, Zingaretti S M. Rodrigus Sugarcane genes differentially expressed during water deficit [J]. Biologia Plantarum, 2011, 55(1): 43-53
[26]  Amudha J, Balasubramani G. Recent molecular advances to combat abiotic stress tolerance in crop plants [J]. Biotechnology and Molecular Biology Review, 2011, 6(2): 31-58
[27]  Jain R, Shrivastava A K, Solomon S, Yadav R L. Low temperature stress-induced biochemical changes affect stubble bud sprouting in sugarcane ( Saccharum spp. hybrid) [J]. Plant Growth Regulation, 2007, 53(1): 17-23
[28]  Carvallo M A, Pino M T, Jeknic Z, Zou C, Doherty C J, Shiu S H, Chen T H H, Thomashow M F. A comparison of the low temperature transcriptomes and CBF regulons of three plant species that differ in freezing tolerance: Solanum commersonii, Solanum tuberosum, and Arabidopsis thaliana [J]. Journal of Experimental Botany, 2011, 62(11): 3807-3819
[29]  Nogueira F T, De Rosa V E, Menossi M, Ulian E C, Arruda P. RNA expression profiles and data mining of sugarcane response to low temperature [J]. Plant Physiol, 2003, 132: 1811-1824
[30]  Chinnusamy V, Zhu J, Zhu J K. Cold stress regulation of gene expression in plants [J]. Trends Plant Sci, 2007, 12: 444-451
[31]  Soumen B. Reactive oxygen species and oxidative burst Roles in stress senescence and signal transduction in plants [J]. Curr Sci, 2005, 89: 1113-1121
[32]  Kwon S Y, Jeong Y J, Lee H S, Kim J S, Cho K Y, Allen R D, Kwak S S. Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stress [J]. Plant, Cell & Environment, 2002, 25(7): 873-882
[33]  Samis K, Bowley S, McKersie B. Pyramiding Mn-superox-ide dismutase transgenes to improve persistence and biomass proresults in alfalfa [J]. J Exp Bot, 2002, 53:1343-1350
[34]  Llorente F, López-Cobollo R M, Catalá R, Martínez-Zapater J M, Salinas J. A novel cold-inducible gene from Arabidopsis , RCI3 , encodes a peroxidase that constitutes a component for stress tolerance [J]. The Plant Journal, 2002, 32(1): 13-24
[35]  王明强, 李文凤, 黄应昆, 王晓燕, 卢文洁, 罗志明. 我国大陆蔗区发生的甘蔗病毒病及防控对策 [J]. 中国糖料, 2010, 4: 55-58
[36]  Hotta C T, Lembke C G, Domingues D S, Ochoa E A, et al. The biotechnology roadmap for sugarcane improvement [J]. Tropical Plant Biol, 2010, 3: 75-87
[37]  Ganesan U, Suri S S, Rajasubramaniam S, Rajam M V, Dasgupta I. Transgenic expression of coat protein gene of rice tungro bacilliform virus in rice reduces the accumulation of viral DNA in inoculated plants [J]. Virus Genes, 2009, 39(1): 113-119
[38]  Liu X, Tan Z, Li W, Zhang H, He D. Cloning and transformation of SCMV CP gene and regeneration of transgenic maize plants showing resistance to SCMV strain MDB [J]. Afr J Biotechnol, 2009, 8:3747-3753
[39]  Bendahmane M, Chena I, Asurmendia S, Bazzinia A A, Szecsia J, Beachy R N. Coat protein-mediated resistance to TMV infection of Nicotiana tabacum involves multiple modes of interference by coat protein [J]. Virology, 2007, 366(1): 107-116
[40]  Lin C H, Sheu F, Lin H T, Pan T M. Allergenicity assessment of genetically modified cucumber mosaic virus (CMV) resistant tomato (Solanum lycopersicon) [J]. J Agric Food Chem, 2010, 58 (4): 2302-2306
[41]  姚 伟, 余爱丽, 徐景升, 耿广良, 张木清, 陈如凯. 转ScMV-CP基因甘蔗的分子生物学分析与鉴定[J]. 分子植物育种, 2004, 2(1): 13-18
[42]  郭 莺, 阮妙鸿, 姚 伟, 陈 荔, 陈如凯, 张木清. CP基因遗传转化甘蔗品种Badila与福农91-4621的抗病性差异分析[J]. 福建农林大学学报(自然科学版), 2008, 37(1): 7-12
[43]  Prins M, Laimer M, Noris E, Schubert J, Wassenegger M, Tepfer M. Strategies for antiviral resistance in transgenic plants [J]. Mol Plant Pathol, 2007, 9: 73-83
[44]  Obbard D J, Gordon K H, Buck A H, Jiggins F. The evolution of RNAi as a defence against viruses and transposable elements [J]. Philos Trans R Soc B, 2009, 364: 99-115
[45]  Tyagi H, Rajasubramaniam S, Rajam M V, Dasgupta I. RNAinterference in rice against rice tungro bacilliform virus results in its decreased accumulation in inoculated rice plants [J]. Transgenic Res, 2008, 17: 897-904
[46]  Zhang Z Y, Yang L, Zhou S F, Wang H G, Li W C, Fu F L. Improvement of resistance to maize dwarf mosaic virus mediated by transgenic RNA interference [J]. J Biotechnol, 2011, 153: 181-187
[47]  Qu J, Ye J, Fang R X. Artificial microRNA-mediated virus resistance in plants [J]. J Virol, 2007, 81:6690-6699
[48]  Fusaro A F, Mtthew L, Simth N A, Curtin S J, Hagan J D, Ellacott G A, Watson J M, Wang M B, Brosnan C, Carroll B J, Waterhouse P M. RNA interference-inducing hairpin RNAs in plants act through the viral defense pathway [J]. EMBO Rep, 2006, 7:1168-1175
[49]  Ingelbrecht I L, Irvine J E, Mirkov T E. Posttranscriptional gene silencing in transgenic sugarcane. Dissection of homology-dependent virus resistance in a monocot that has a complex polyploid genome [J]. Plant Physiol, 1999, 119:1187-1198
[50]  McQualter R B, Dale J L, Harding R M, McMahon J A, Smith G R. Production and evaluation of transgenic sugarcane containing Fiji disease virus (FDV) genome segment S9-derived synthetic resistance gene [J]. Aust J Agric Res, 2004, 55(2): 139-145
[51]  Ding S W. RNA-based antiviral immunity [J]. Nat Rev Immunol, 2010, 10: 632-644
[52]  Butterfield M, Irvine J, Valdez Garza M, Mirkov T. Inheritance and segregation of virus and herbicide resistance transgenes in sugarcane [J]. Theor Appl Genet, 2002, 104(5): 797-803
[53]  Lian Y, Jia Z W, He K L, Liu Y J, Song F P, Wang B M, Wang G Y. Transgenic tobacco plants expressing synthetic Cry1Ac and Cry1Ie genes are more toxic to cotton bollworm than those containing one gene [J]. Chinese Science Bulletin, 2008, 53(9): 1381-1387
[54]  Qiu C X, Sangha J S, Song F S, Zhou Z Y, Yin A, Gu K Y, Tian D S, Yang J B, Yin Z C. Production of marker-free transgenic rice expressing tissue-specific Bt gene [J]. Plant Cell Rep, 2010, 29(10), 1097-1107
[55]  Mugo S N, Mwimali M, Taracha C O, Songa J M, Gichuki S T, Tende R, Karaya H, Bergvinson D J, Pellegrineschi A, Hoisington D A. Testing public Bt maize events for control of stem borers in the first confined field trials in Kenya [J]. African Journal of Biotechnology, 2011, 10(23): 4713-4718
[56]  Irvine J E, Mirkov T E. The development of genetic transgenic transformation of sugarcane in Texas [J]. Sugar Journal, 1997, 60: 25-29
[57]  Setamou M, Bernal J S, Legaspi J C, Mirkov T E. Effects of snowdrop lectin (Galanthus nivalis agglutinin) on fitness of Cotesia flavipes ( Hymenoptera: Braconidae ), a parasitoid of the nontarget pest Diaeterella saccharalis (Lepidoptera: Crambidae) [J]. Annals of the Entomological Society of America, 2002, 95: 75-83
[58]  Deng Z N, Wei Y W, Lü W L, Li Y R. Fusion insect-resistant gene mediated by matrix attachment region (MAR) sequence in transgenic sugarcane [J]. Sugar Tech, 2008, 10(1): 87-90
[59]  DeVilliers S M, Hoisington D A. The trends and future of biotechnology crops for insect pest control [J]. African Journal of Biotechnology, 2011, 10(23):4677-4681
[60]  顾丽红, 张树珍, 杨本鹏, 蔡文伟, 黄东杰, 王文治, 李 娇. 几丁质酶和β-l, 3-葡聚糖酶基因导入甘蔗[J]. 分子植物育种, 2008, 6(2): 277-280
[61]  Kesari R, Trivedi P K, Nath P. Gene expression of pathogenesis-related protein during banana ripening and after treatment with 1-MCP [J]. Postharvest Biology and Thchnology, 2010, 56(1): 64-70
[62]  Wessels J G H. Developmental regulation of fungal cell wall formation [J]. Anna Rev Phytopathol, 1994, 32: 413-437
[63]  李 娇, 王 震, 杨本鹏, 张树珍, 蔡文伟, 顾丽红, 杨志才,王文治. 转基因甘蔗抗黑穗病鉴定研究 [J]. 广西农业科学, 2009, 40(9): 1150-1155
[64]  DeYoung B J, Innes R W. Plant NBS-LRR proteins in pathogen sensing and host defense [J]. Nat Immunol, 2006, 7:1243-49
[65]  Wroblewski T, Piskurewicz U, Tomczak A, Ochoa O, Michelmore R W. Silencing of the major family of NBS-LRR-encoding genes in lettuce results in the loss of multiple resistance specificities [J]. The Plant Journal, 2007, 51(5): 803-818
[66]  阙友雄, 许莉萍, 张木清, 徐景升, 张积森, 陈如凯. 甘蔗中一个NBS-LRR 类基因的全长克隆与表达分析 [J]. 作物学报, 2009, 35(6): 1161-1166
[67]  王自章, 张树珍, 杨本鹏, 李杨瑞. 甘蔗根癌农杆菌介导转化海藻糖合酶基因获得抗渗透胁迫能力增强植株 [J]. 中国农业科学, 2003, 36:140-146
[68]  Molinari H, Marura C, Darosb E, Camposa M, Carvalhoa J, Filhob J, Pereirac L, Vieiraa L. Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress [J]. Physiologia Plantarum, 2007, 130(2): 218-229
[69]  Trujillo L E, Menéndez C, Ochogavía M E, Hernández I, Borrás O, Rodríguez R, Coll Y, Arrieta J G, Banguela A, Ramírez R, Hernández L. Engineering drought and salt tolerance in plants using SodERF3 , a novel sugarcane ethylene responsive factor [J]. Biotecnol Apl, 2009, 26(2): 168-171
[70]  张积森, 郭春芳, 王冰梅, 张木清, 陈由强, 陈如凯. 甘蔗水分胁迫响应相关醛脱氢酶基因的克隆及其表达特征分析 [J]. 中国农业科学,2009,42(8):2676-2685
[71]  Prabu G, Kawar P G, Pagariya M C, Prasad D T. Identification of water deficit stress pregulated genes in sugarcane [J]. Plant Mol Biol Rep, 2011, 29:291-304
[72]  张保青, 杨丽涛, 李杨瑞. 自然条件下甘蔗品种抗寒生理生化特性的比较 [J].作物学报, 2011, 37(3): 496-505
[73]  McKhann H I, Gery C, Berard A, Leveque S, Zuther E, Hincha D K, De Mita S, Brunel D, Teoule E. Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana [J]. BMC Plant Biology, 2008, 8: 105-122
[74]  Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K. A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer [J]. Plant and Cell Physiology, 2004, 45: 346-350
[75]  Behnam B, Kikuchi A, Celebi-Toprak F, Kasuga M, Yamaguchi-Shinozaki K, Watanabe K N. Arabidopsis rd29A::DREB1A enhances freezing tolerance in transgenic potato [J]. Plant Cell Rep, 2007, 26: 1275-1282
[76]  Su C F, Wang Y C, Hsieh T H, Lu C A, Tseng T H, Yu S M . A novel MYBS3-dependent pathway confers cold tolerance in rice[J]. Plant Physiol, 2010, 153:145-158
[77]  Apel K, Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction [J]. Annu Rev Plant Bio1, 2004, 55: 373-379

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133