Moore T. Vitamin A and carotene: The absence of the liver oil vitamin A from carotene. VI. The conversion of carotene to vitamin A in vivo[J]. Biochemical Journal,1930, 24(3):692-702
[2]
Olson J A, Hayaishi O. The enzymatic cleavage of beta-carotene into vitamin A by soluble enzymes of rat liver and intestine [J]. Proceedings of the National Academy of Sciences of the United States of America, 1965, 54(5):1364-1370
[3]
Goodman D S, Huang H S. Biosynthesis of vitamin A with rat intestinal enzymes[J]. Science, 1965, 149(3686):879-880
[4]
Tan B C, Schwartz S H, Zeevaart J A, McCarty D R.Genetic control of abscisic acid biosynthesis in maize[J]. Proceedings of the National Academy of Sciences,1997, 94(22):12235-12240
[5]
Kamoda S, Saburi Y. Cloning, expression and sequence analysis of a lignostilbene-a, b-dioxygenase gene from Pseudomonas paucimobilis TMY1009[J]. Biosci Biotechnol Biochem, 1993, 57(6):926-930
[6]
Schwartz S H, Tan B C, Gage D A, Zeevaart J A, McCarty D R. Specific oxidative cleavage of carotenoids by VP14 of maize[J]. Science, 1997, 276(5320):1872-1874
[7]
Lange B M, Ghassemian M.Genome organization in Arabidopsis thaliana a survey for genes involved in isoprenoid and chlorophyll metabolism[J]. Plant molecular Biology, 2003, 51(6): 925-948
[8]
Simkin A J, Schwartz S H, Auldridge M, Taylor M G, Klee H J. The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles beta-ionone, pseudoionone, and geranylacetone[J]. The Plant Journal: for Cell and Molecular Biology, 2004, 40(6):882-892
[9]
Vogel J T, Walter M H, Giavalisco P, Lytovchenko A, Kohlen W, Charnikhova T, Simkin A J, Goulet C, Strack D, Bouwmeester H J. SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato[J]. The Plant Journal: for Cell and Molecular Biology, 2010, 61(2):300-311
[10]
Kohlen W, Charnikhova T, Lammers M, Pollina T, Toth P, Haider I, Pozo M J, de Maagd R A, Ruyter-Spira C, Bouwmeester H J. The tomato carotenoid cleavage dioxygenase8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis[J]. The New Phytologist, 2012, 196(2):535-547
[11]
Vallabhaneni R, Bradbury L M, Wurtzel E T. The carotenoid dioxygenase gene family in maize, sorghum, and rice[J]. Archives of Biochemistry and Biophysics 2010, 504(1):104-111
[12]
Tuan P A, Park S U: Molecular cloning and characterization of cDNAs encoding carotenoid cleavage dioxygenase in bitter melon (Momordica charantia)[J]. Journal of Plant Physiology, 2013, 170(1):115-120
[13]
Pasare S A, Ducreux L J, Morris W L, Campbell R, Sharma S K, Roumeliotis E, Kohlen W, Krol S, Bramley P M, Roberts A G. The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development[J]. The New Phytologist, 2013, 198(4):1108-1120
[14]
Li C N, Srivastava M K, Nong Q, Yang L T, Li Y R. Molecular cloning and characterization of SoNCED, a novel gene encoding 9-cis-epoxycarotenoid dioxygenase from sugarcane (Saccharum officinarum L.)[J]. Genes & Genomics, 2013, 35(1):101-109
[15]
Lashbrooke J G, Young P R, Dockrall S J, Vasanth K, Vivier M A. Functional characterisation of three members of the Vitis vinifera L. carotenoid cleavage dioxygenase gene family[J]. BMC Plant Biology, 2013, 13(1):156
[16]
Yoshioka S, Aida R, Yamamizo C, Shibata M, Ohmiya A.The carotenoid cleavage dioxygenase 4 (CmCCD4a) gene family encodes a key regulator of petal color mutation in chrysanthemum[J]. Euphytica, 2012, 184(3):377-387
[17]
Ma J, Li J, Zhao J, Zhou H, Ren F, Wang L, Gu C, Liao L, Han Y. Inactivation of a gene encoding carotenoid cleavage dioxygenase (CCD4) leads to carotenoid-based yellow coloration of fruit flesh and leaf midvein in peach[J]. Plant Molecular Biology Reporter, 2013:1-12
[18]
Tan B C, Joseph L M, Deng W T, Liu L, Li Q B, Cline K, McCarty D R. Molecular characterization of the Arabidopsis 9-cis-epoxycarotenoid dioxygenase gene family[J]. The Plant Journal, 2003, 35(1):44-56
[19]
Auldridge M E, Block A, Vogel J T, Dabney S C, Mila I, Bouzayen M, Magallanes L M, Della P D, McCarty D R, Klee H J.Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family[J]. The Plant Journal, 2006, 45(6):982-993
[20]
Vallabhaneni R, Bradbury L M, Wurtzel E T. The carotenoid dioxygenase gene family in maize, sorghum, and rice[J]. Archives of Biochemistry and Biophysics, 2010, 504(1):104-111
[21]
Auldridge M E, McCarty D R, Klee H J. Plant carotenoid cleavage oxygenases and their apocarotenoid products[J]. Current Opinion in Plant Biology, 2006, 9(3):315-321
[22]
Heo J, Kim S H, Lee P C. New insight into the cleavage reaction of Nostoc sp. strain PCC 7120 carotenoid cleavage dioxygenase in natural and nonnatural carotenoids[J]. Applied and Environmental Microbiology, 2013, 79(11):3336-3345
[23]
Kloer D P, Schulz G E. Structural and biological aspects of carotenoid cleavage[J]. Cellular and Molecular Life Sciences, 2006, 63(19/20):2291-2303
[24]
Auldridge M E, Block A, Vogel J T, Dabney S C, Mila I, Bouzayen M, Magallanes L M, DellaPenna D, McCarty D R, Klee H J. Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family[J]. The Plant Journal: for Cell and Molecular biology, 2006, 45(6):982-993
[25]
Messing S A, Gabelli S B, Echeverria I, Vogel J T, Guan J C, Tan B C, Klee H J, McCarty D R, Amzel L M. Structural insights into maize viviparous14, a key enzyme in the biosynthesis of the phytohormone abscisic acid[J]. The Plant Cell Online, 2010, 22(9):2970-2980
[26]
Bertoni G. Maize viviparous14: structure meets function[J]. The Plant Cell, 2010, 22(9):2925
[27]
Messing S A, Gabelli S B, Echeverria I, Vogel J T, Guan J C, Tan B C, Klee H J, McCarty D R, Amzel L M. Structural insights into maize viviparous14, a key enzyme in the biosynthesis of the phytohormone abscisic acid[J]. The Plant Cell, 2010, 22(9):2970-2980
[28]
Qin X, Zeevaart J A. Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance[J]. Plant Physiology, 2002, 128(2):544-551
[29]
Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi S K, Shinozaki K. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis[J]. The Plant Journal, 2001, 27(4):325-333
[30]
Zhang M, Leng P, Zhang G, Li X. Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits[J]. Journal of Plant Physiology, 2009, 166(12):1241-1252
[31]
Foo E, Turnbull C G, Beveridge C A. Long-distance signaling and the control of branching in therms1 mutant of pea[J]. Plant Physiology, 2001, 126(1):203-209
[32]
Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda K N, Magome H, Kamiya Y, Shirasu K, Yoneyama K.Inhibition of shoot branching by new terpenoid plant hormones[J]. Nature, 2008, 455(7210):195-200
[33]
Drummond R S, Martínez-Sánchez N M, Janssen B J, Templeton K R, Simons J L, Quinn B D, Karunairetnam S, Snowden K C. Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE7 is involved in the production of negative and positive branching signals in petunia[J]. Plant Physiology, 2009, 151(4):1867-1877
[34]
Kapulnik Y, Delaux P M, Resnick N, Mayzlish G E, Wininger S, Bhattacharya C, Séjalon D N, Combier J P, Bécard G, Belausov E. Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis[J]. Planta, 2011, 233(1):209-216
[35]
Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P, Turnbull C, Srinivasan M, Goddard P, Leyser O. MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone[J]. Developmental Cell, 2005, 8(3):443-449
[36]
Schwartz S H, Qin X, Loewen M C. The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching[J]. Journal of Biological Chemistry, 2004, 279(45):46940-46945
[37]
Yoneyama K, Awad A A, Xie X, Yoneyama K, Takeuchi Y. Strigolactones as germination stimulants for root parasitic plants[J]. Plant and Cell Physiology, 2010, 51(7):1095-1103
[38]
Awad A A, Sato D, Kusumoto D, Kamioka H, Takeuchi Y, Yoneyama K. Characterization of strigolactones, germination stimulants for the root parasitic plants striga and orobanche, produced by maize, millet and sorghum[J]. Plant Growth Regulation, 2006, 48(3):221-227
[39]
Akiyama K, Matsuzaki K I, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi[J]. Nature, 2005, 435(7043):824-827
[40]
Liu J, Novero M, Charnikhova T, Ferrandino A, Schubert A, Ruyter P C, Bonfante P, Lovisolo C, Bouwmeester H J, Cardinale F. Carotenoid cleavage dioxygenase 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicus[J]. Journal of Experimental Botany, 2013, 64(7):1967-1981
[41]
Alder A, Holdermann I, Beyer P, Al-Babili S. Carotenoid oxygenases involved in plant branching catalyse a highly specific conserved apocarotenoid cleavage reaction[J]. The Biochemical Journal, 2008, 416(2):289-296
[42]
Maier W, Peipp H, Schmidt J, Wray V, Strack D. Levels of a terpenoid glycoside (blumenin) and cell wall-bound phenolics in some cereal mycorrhizas[J]. Plant Physiology, 1995, 109(2):465-470
[43]
Klingner A, Bothe H, Wray V, Marner F-J.Identification of a yellow pigment formed in maize roots upon mycorrhizal colonization[J]. Phytochemistry, 1995, 38(1):53-55
[44]
Walter M H, Fester T, Strack D. Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the 'yellow pigment’and other apocarotenoids[J]. The Plant Journal, 2000, 21(6):571-578
[45]
Mathieu S, Terrier N, Bigey F, Günata Z. A carotenoid cleavage dioxygenase from Vitis vinifera L.: functional characterization and expression during grape berry development in relation to C13-norisoprenoid accumulation[J]. Journal of Experimental Botany, 2005, 56(420):2721-2731
[46]
Schwartz S H, Qin X, Zeevaart J A. Characterization of a novel carotenoid cleavage dioxygenase from plants[J]. Journal of Biological Chemistry, 2001, 276(27):25208-25211
[47]
Vogel J T, Tan B C, McCarty D R, Klee H J. The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity, cleaving multiple carotenoids at two different bond positions[J]. Journal of Biological Chemistry, 2008, 283(17):11364-11373
[48]
Floss D S, Schliemann W, Schmidt J, Strack D, Walter M H. RNA interference-mediated repression of MtCCD1 in mycorrhizal roots of Medicago truncatula causes accumulation of C27 apocarotenoids, shedding light on the functional role of CCD1[J]. Plant Physiology, 2008, 148(3):1267-1282
[49]
Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule[J]. Current Biology, 2004, 14(14):1232-1238
[50]
Alder A, Holdermann I, Beyer P, Al-Babili S. Carotenoid oxygenases involved in plant branching catalyse a highly specific conserved apocarotenoid cleavage reaction[J]. Biochem Journal, 2008, 416(2):289-296
[51]
Floss D S, Walter M H. Role of carotenoid cleavage dioxygenase 1 (CCD1) in apocarotenoid biogenesis revisited[J]. Plant Signaling & Behavior, 2009, 4(3):172-175
[52]
Baldermann S, Kato M, Kurosawa M, Kurobayashi Y, Fujita A, Fleischmann P, Watanabe N. Functional characterization of a carotenoid cleavage dioxygenase 1 and its relation to the carotenoid accumulation and volatile emission during the floral development of Osmanthus fragrans Lour[J]. Journal of Experimental Botany, 2010, 61(11):2967-2977
[53]
Ilg A, Yu Q, Schaub P, Beyer P, Al-Babili S. Overexpression of the rice carotenoid cleavage dioxygenase 1 gene in Golden Rice endosperm suggests apocarotenoids as substrates in planta[J]. Planta, 2010, 232(3):691-699
[54]
Sun Z, Hans J, Walter M H, Matusova R, Beekwilder J, Verstappen F W, Ming Z, Echtelt E, Strack D, Bisseling T. Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions[J]. Planta, 2008, 228(5):789-801
[55]
Huang F C, Molnar P, Schwab W. Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes[J]. Journal of Experimental Botany, 2009, 60(11):3011-3022
[56]
Baldermann S, Kato M, Fleischmann P, Watanabe N. Biosynthesis of α- and β-ionone, prominent scent compounds, in flowers of Osmanthus fragrans[J]. ACTA Biochimica Polonica,2012,59(1):79-81
[57]
Chaudhary N, Nijhawan A, Khurana JP, Khurana P. Carotenoid biosynthesis genes in rice: structural analysis, genome-wide expression profiling and phylogenetic analysis[J]. Molecular Genetics and Genomics, 2010, 283(1):13-33
Lespinet O, Wolf Y I, Koonin E V, Aravind L.The role of lineage-specific gene family expansion in the evolution of eukaryotes[J]. Genome Research, 2002, 12(7):1048-1059
[61]
Lokstein H, Tian L, Polle J E, DellaPenna D. Xanthophyll biosynthetic mutants of Arabidopsis thaliana: altered nonphotochemical quenching of chlorophyll fluorescence is due to changes in Photosystem II antenna size and stability[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2002, 1553(3):309-319
[62]
Holt N E, Zigmantas D, Valkunas L, Li X P, Niyogi K K, Fleming G R. Carotenoid cation formation and the regulation of photosynthetic light harvesting[J]. Science, 2005, 307(5708):433-436
[63]
Latowski D, Kuczyńska P, Strzaka K. Xanthophyll cycle-a mechanism protecting plants against oxidative stress[J]. Redox Report, 2011, 16(2):78-90
[64]
Park H, Kreunen S S, Cuttriss A J, DellaPenna D, Pogson B J. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis[J]. The Plant Cell Online, 2002, 14(2):321-332
[65]
Howitt C A, Pogson B J. Carotenoid accumulation and function in seeds and non-green tissues[J]. Plant, Cell & Environment,2006, 29(3):435-445
[66]
Franco A C, Matsubara S, Orthen B. Photoinhibition, carotenoid composition and the co-regulation of photochemical and non-photochemical quenching in neotropical savanna trees[J]. Tree Physiology, 2007, 27(5):717-725
[67]
McNulty H P, Byun J, Lockwood S F, Jacob R F, Mason R P. Differential effects of carotenoids on lipid peroxidation due to membrane interactions: X-ray diffraction analysis[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2007, 1768(1):167-174
[68]
Calucci L, Capocchi A, Galleschi L, Ghiringhelli S, Pinzino C, Saviozzi F, Zandomeneghi M. Antioxidants, free radicals, storage proteins, puroindolines, and proteolytic activities in bread wheat (Triticum aestivum) seeds during accelerated aging[J]. Journal of agricultural and food chemistry, 2004, 52(13):4274-4281
[69]
Rubio A, Rambla J L, Santaella M, Gómez M D, Orzaez D, Granell A, Gómez-Gómez L. Cytosolic and plastoglobule-targeted carotenoid dioxygenases from Crocus sativus are both involved in β-ionone release[J]. Journal of Biological Chemistry, 2008, 283(36):24816-24825
[70]
Bouvier F, Dogbo O, Camara B. Biosynthesis of the food and cosmetic plant pigment bixin (annatto)[J]. Science, 2003, 300(5628):2089-2091
[71]
Cui H, Wang Y, Qin S. Genomewide analysis of carotenoid cleavage dioxygenases in unicellular and filamentous cyanobacteria[J]. Comparative and Functional Genomics, 2012,:164690
[72]
Pryce R. The occurrence of lunularic and abscisic acids in plants[J]. Phytochemistry, 1972, 11(5):1759-1761