全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
核农学报  2014 

小麦幼苗根系抗氧化酶对镍胁迫的响应

DOI: 10.11869/j.issn.100-8551.2014.09.1708, PP. 1708-1714

Keywords: 小麦,,抗氧化酶,谷胱甘肽转硫酶

Full-Text   Cite this paper   Add to My Lib

Abstract:

为阐明Ni对小麦(TriticumaestivumL.)毒害的生理生化机理,研究了不同浓度Ni(0、50、100、200、400μmol·L-1)对小麦幼苗根系生长和活性氧代谢的影响。结果表明,50μmol·L-1Ni处理小麦幼苗6d对根系生长和活性氧含量及抗氧化酶活性无显著影响。100~400μmol·L-1Ni处理时,随着Ni处理浓度增加,根系鲜重和长度逐渐降低,H2O2和MDA含量及O2-·产生速率则逐渐升高;超氧化物歧化酶(SOD)、谷胱甘肽还原酶(GR)、谷胱甘肽转硫酶(GST)、谷胱甘肽过氧化物酶(GPX)和葡萄糖-6-磷酸脱氢酶(G6PDH)活性逐渐提高,抗坏血酸过氧化物酶(APX)活性先上升后下降,100μmol·L-1Ni浓度时APX活性最大;过氧化物酶(POD)活性则无显著变化。采用聚丙烯酰胺凝胶电泳分析抗氧化酶同工酶谱发现,100μmol·L-1Ni处理诱导新的同工酶带APX-3和APX-4;对照组SOD出现了2条同工酶带,G6PDH出现4条同工酶带;100和400μmol·L-1Ni处理增强SOD和G6PDH同工酶带活性。由此可见,过量Ni处理抑制小麦根系生长、诱导活性氧水平升高而导致氧化胁迫,而SOD、APX、GST和GPX等抗氧化酶活性增加可能是根系为抵御氧化胁迫而产生的一种适应性响应。

References

[1]  Gajewska E, Niewiadomiska E, Tokarz K, Slaba M, Sklodowska M. Nickel-induced changs in carbon metabolism in wheat shoots [J]. Journal of Plant Physiology, 2013, 170(4): 369-377
[2]  Baccouch S, Chaoui A, Ferjani E E. Nickel-induced oxidative damage and antioxidant responses in Zea mays shoots [J]. Journal of Plant Nutrition, 2001, 24 (7): 1085-1097
[3]  Gomes-Junior R A, Moldes C A, Delite F S, Grato P L, Mazzafera P, Lea P J, Azevedo R A. Nickel elicits a fast antioxidant response in coffea arabica cells [J]. Plant Physiology and Biochemistry, 2006, 44(5/6): 420-429
[4]  Boominathan R, Doran P M. Ni-induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii [J]. New Phytologist, 2002, 156(2): 205-215
[5]  Mittler R, Vanderauwera S, Gollery M, Breusegem F V. Reactive oxygen gene network of plants [J]. Trends in Plants Science, 2004, 9(10): 490-498
[6]  Collin VC, Eymery F, Genty B, Rey P, Havaux M. Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress [J]. Plant Cell Environment, 2008, 31(2): 244-257
[7]  Wang S H, Zhang H, Zhang Q, Jin G M, Jiang S J, Jiang D, He Q Y, Li Z P. Copper-induced oxidative stress and responses of the antioxidant system in roots of Medicago sativa [J]. Journal of Agronomy and Crop Science, 2011, 197(6): 418-429
[8]  Neill S, Desikan R, Hancock J. Hydrogen peroxide signaling [J]. Current Opinion in Plant Biology, 2002, 5(5): 388-395
[9]  Wang Y S, Yang Z M. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. [J]. Plant Cell Physiology, 2005, 46(12): 1915-1923
[10]  Knorzer O C, Durner J, Boger P. Alteration in the antioxidative system of suspension cultivated soybean cells (Glycine max) induced by oxidative stress[J]. Physiologia Plantarum, 1996, 97(2): 388-396
[11]  Halukovǎ L, Valentovicová K, Huttová J, Mistrik I, Tamás L. Effect of abiotic stresses on glutathione peroxidase and glutathione S-transferase activity in barley root tips [J]. Plant Physiology and Biochemistry, 2009, 47(11/12): 1069-1074
[12]  Romero-Puertas M C, Rodriguez-serrano M, Corpas, F J, Gómez M, Del Rio L A, Sandalio L M. Cadmium-induced subcellular accumulation of O2-·and H2O2 in pea leaves [J]. Plant Cell Environment, 2004, 27(9) : 1122-1134
[13]  孙静,李晔,刘联国, 詹萍萍,张春丹,苏秀榕. 地衣芽孢杆菌富集镉的特性及机理研究[J]. 核农学报,2013,27(11):1644-1651
[14]  Hao F S, Wang X C, Chen J. Involvement of plasma-membrane NADPH oxidase in nickel-induced oxidative stress in roots of wheat seedlings [J]. Plant Science, 2006, 170(1): 151-158
[15]  Eskew D L, Welch R M, Norvell W A. Nickel: An essential micronutrient for legumes and possibly all higher plant [J]. Science, 1983, 222 (11): 621-623
[16]  Wang S H, Zhang H, Jiang S J, Zhang Q, He Q Y, He H Q. Effects of the nitric oxide donor sodium nitroprusside on antioxidant enzymes in wheat seedlings roots under nickel stress [J]. Russian Journal of Plant Physiology, 2010, 57(6): 833-839
[17]  王松华, 周正义, 何庆元, 王晓鹏, 宋李红, 陆晓民. 一氧化氮对小麦中叶片镍毒害的缓解作用[J]. 云南植物研究 , 2007, 29(1):115-121
[18]  Freeman J L, Garcia D, Kim D, Hopf A, Salt D V. Constitutively elevated Salicylic acid signals glutathione-mediated nickel tolerance in thlaspi nickel hyperaccumulators [J]. Plant Physiology, 2005, 137(3): 1082-1091
[19]  Freeman J L, Persans M V, Nieman K, Albrecht C, Peer W, Pickering I J, Salt D V. Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators [J]. Plant cell, 2004, 16(8): 2176-2191
[20]  王海华, 康健, 曾富华, 蒋明义. 高浓度镍对水稻幼苗生长及其酶活性的影响 [J]. 作物学报, 2001, 27(6): 953-957
[21]  Gajewska E, Sklodowska M, Slaba M, Mazur J. Effect of nickel on antioxidative enzyme activities proline and chlorophyll contents in wheat shoots [J]. Biologia Plantarum, 2006, 50(4): 653-659
[22]  Maleva G M, Nekrasova G F, Malec P, Prasad M N V, Strzalka K. Ecophysiological tolerance of Elodea canadensis to nickel exposure[J]. Chemosphere, 2009, 77(3): 392-398
[23]  Gajewska E, Sklodowska M. Effect of nickel on ROS content and antioxidative enzyme activities in wheat leaves [J]. Biometals, 2007, 20(1): 27-36
[24]  Dixon D P, Skipsey M, Edwards R. Roles for glutathione transferases in plant secondary metabolism [J]. Phytochemistry, 2010, 71(4): 338-350
[25]  Smith P A, Deridder B P, Guo W J, Seeley E H, Regnier F E, Goldsbrough P B. Protemoic analysis of Arabidopsis glutathione S-transferases from benoxacor and copper-treated seedlings [J]. Journal of Biological Chemistry, 2004, 279(25): 26098-26104
[26]  Roxas V P, Lodhi S A, Garrett D K, Mahan J R, Allen R D. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase [J]. Plant Cell Physiology, 2000, 41(11): 1229-1234
[27]  Drazkiewicz M, Polit E S, Krupa Z. Response of the ascorbate-glutathione cycle to excess copper in Arabidopsis thaliana L. [J]. Plant Science, 2003, 164(2): 195-20
[28]  Kubrak O, Husak V V, Rovenko B M, Poigner H, Kriews M, Abele D, Lushchak V I. Antioxidant system efficiently protects goldfish gills from Ni2+-induced oxidative stress [J]. Chemosphere, 2013, 90(3): 971-976
[29]  刘伟,黄建中,郭得平,陈子元.茭白肉质茎膨大期间的氧化胁迫[J]. 核农学报,2011,25(4):824-827

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133