全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
核农学报  2015 

胡萝卜2个DcDREB-A1类转录因子基因的克隆与比较分析

DOI: 10.11869/j.issn.100-8551.2015.01.0029, PP. 29-39

Keywords: 胡萝卜,转录因子,DREB类,基因克隆,表达分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

植物DREB类转录因子在植物抗逆性方面具有重要作用。本文以胡萝卜黑田五寸为材料,基于胡萝卜转录组数据,通过RT-PCR方法克隆出2个DREB-A1类转录因子基因DcDREB-A1-1和DcDREB-A1-2。序列分析显示,这2个基因均没有内含子,长度分别为780bp和669bp,分别编码259和222个氨基酸;预测其蛋白质相对分子质量分别为29.0KD和24.71KD,pI值分别为4.32和4.63。通过对氨基酸亲水/疏水性进行分析,发现这2个转录因子属于亲水性蛋白。实时定量PCR分析表明,DcDREB-A1-1和DcDREB-A1-2基因在胡萝卜不同组织中的表达量不同,分别在叶和根中表达量最高。低温(4℃)、高温(38℃)、盐(0.2mol·L-1NaCl)、干旱(200g·L-1PEG)不同时间段处理表达分析显示,DcDREB-A1-1在低温、高温、盐和干旱胁迫下被显著诱导,高温、盐和干旱处理1h后表达量达到最高,分别比对照增加14倍、7倍、7倍,低温处理下2h表达量最高,是对照的18倍;而DcDREB-A1-2在高温、低温和盐处理下响应明显,高温处理1h后表达量为对照的12倍,低温和干旱处理下8h基因表达量分别比对照增加2.4倍、6.2倍,说明2个基因在响应逆境胁迫时表达不同。胡萝卜响应非生物逆境胁迫是一个复杂的过程,本试验对深入研究胡萝卜抗逆分子机制,提高胡萝卜逆境抗性等方面具有较为重要的意义。

References

[1]  李洁. 植物转录因子与基因调控[J]. 生物学通报, 2004, 39(3): 9-11
[2]  庄静, 彭日荷, 高峰, 付晓燕, 朱波, 金晓芬, 张健, 熊爱生, 姚泉洪. 沪油15中两个AP2/ERF-B1亚族转录因子的克隆与分析[J]. 核农学报, 2009, 23 (3): 435-441
[3]  Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-Binding Specificity of the ERF/AP2 Domain of Arabidopsis DREBs, Transcription Factors Involved in Dehydration-and Cold-Inducible Gene Expression[J]. Biochemical and Biophysical Research Communications, 2002, 290(3): 998-1009
[4]  Zhuang J, Yao Q H, Xiong A S, Zhang J. Isolation, phylogeny and expression patterns of AP2-like genes in apple (Malus× domestica Borkh)[J]. Plant Molecular Biology Reporter, 2011, 29(1): 209-216
[5]  Eric J, Mao Y, Rejier M K, Triezenberg S J, Thomashow M F. Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression[J]. Nucleic Acids Research, 2001, 29(7): 1524-1533
[6]  Haake V, Cook D, Riechmann J L, Pineda O, Thomashow M F, Zhang J Z. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis[J]. Plant Physiology, 2002, 130(2): 639-648
[7]  Shinozaki K, Dennis E S. Cell signalling and gene regulation: global analyses of signal transduction and gene expression profiles[J]. Current Opinion in Plant Biology, 2003, 6(5): 405-409
[8]  Matsukura S, Mizoi J, Yoshida T, Todaka D, Ito Y, Maruyama K, Shinozaki K, Yamaguchi-Shinozaki K. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes[J]. Molecular Genetics and Genomics, 2010, 283(2): 185-196
[9]  Chen M, Xu Z S, Xia L Q, Li L C, Cheng X G, Dong J H, Wang Q Y, Ma Y Z. Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine max L.)[J]. Journal of Experimental Botany, 2009, 60(1): 121-135
[10]  Shen Y G, Zhang W K, He S J, Zhang J S, Liu Q, Chen S Y. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress[J]. Theoretical and Applied Genetics, 2003, 106 (5): 923-930
[11]  Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S. Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat[J]. Genes & Genetic Systems, 2006, 81(2): 77-91
[12]  Oh S J, Kwon C W, Choi D W, Song S I, Kim J K. Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice[J]. Plant Biotechnology Journal, 2007, 5(5): 646-656
[13]  Shan D P, Huang J G, Yang Y T, Guo Y H, Wu C A, Yang G D, Gao Z, Zheng C C. Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid[J]. New Phytologist, 2007, 176(1): 70-81
[14]  Qin F, Sakuma Y, Li J, Liu Q, Li Y Q, Shinozaki K, Yamaguchi S K. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L[J]. Plant and Cell Physiology, 2004, 45(8): 1042-1052
[15]  Islam M S, Wang M H. Expression of dehydration responsive element binding protein-3 (DREB3) under different abiotic stresses in tomato[J]. Biochemistry and Molecular Biology Reports, 2009, 42(9): 611-616
[16]  Chen J H, Xia X L, Yin W L. Expression profiling and functional characterization of a DREB2-type gene from Populus euphratica[J]. Biochemical Biophysical Research Communications, 2009, 378(3):483-487
[17]  Benedict C, Skinner J S, Meng R, Chang Y J, Bhalerao R, Huner N P A, Finn C E, Chen T H H, Hurry V. The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp[J]. Plant Cell and Environment, 2006, 29(7): 1259-1272
[18]  张梅, 刘炜, 毕玉平. 植物中DREBs 类转录因子及其在非生物胁迫中的作用[J]. 遗传, 2009, 31(3): 236-244
[19]  Hong J P, Kim W T. Isolation and functional characterization of the Ca-DREBLP1 gene encoding a dehydration-responsive element binding-factor-like protein 1 in hot pepper (Capsicum annuum L. cv. Pukang)[J]. Planta, 2005, 220(6): 875-888
[20]  阳文龙, 刘敬梅, 刘强, 公衍道, 赵南明. 高羊茅DREB 类转录因子基因的分离及鉴定分析[J]. 核农学报, 2006, 20(3): 187-192
[21]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739
[22]  Zhao T J, Sun S, Liu Y, Liu J M, Liu Q, Yan Y B, Zhou H M. Regulating the drought-responsive element (DRE)-mediated signaling pathway by synergic functions of trans-active and trans-inactive DRE binding factors in Brassica napus[J]. Journal of Biological Chemistry, 2006, 281(16): 10752-10759
[23]  Yamaguchi S K, Shinozaki K. Transcriptional Regulatory Networks in Cellular Responses and Tolerance to Dehydration and Cold Stresses[J]. Annual Review of Plant Biology, 2006, 57: 781-803
[24]  徐坚, 王燕, 陈先知, 朱隆静, 王克磊. 大白菜热激转录因子基因家族鉴定及表达分析[J]. 核农学报, 2014, 28(4): 586-596
[25]  马廷臣, 余蓉蓉, 陈荣军, 曾汉来, 张端品. 全基因组表达分析不同强度干旱胁迫下常规籼稻根系转录因子表达变化[J]. 核农学报, 2013, 27(9):1258-1269
[26]  Gilmour S J, Zarka D G, Stockinger E J, Salazar M P, Houghton J M, Thomashow M F. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activation as an early step cold induced COR gene expression[J]. The Plant Journal, 1998, 16 (4): 433-442
[27]  Haake V, Cook D, Riechmann J L, Pineda O, Thomashow M F, Zhang J Z. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis[J]. Plant Physiology, 2002, 130 (2): 639-648
[28]  王北艳, 殷奎德. 转rd29A-ICE1冷诱导基因水稻提高抗寒性研究[J]. 核农学报, 2013, 27(6): 731-735
[29]  向殿军, 满丽莉, 张娣, 王丽娜, 殷奎德, 宋群雁, 徐正进. LsICE1基因表达及调控转基因水稻抗冷通路研究[J]. 核农学报, 2013, 27 (10): 1424-1430
[30]  刘李峰. 我国胡萝卜产业发展现状[J]. 上海蔬菜, 2006,(2): 4-6
[31]  庄飞云, 欧承刚, 赵志伟. 胡萝卜育种回顾及展望[J]. 中国蔬菜, 2008, 1(3): 41-44
[32]  吴关庭, 胡张华, 陈瑾清. CBF转录激活因子及其在提高植物耐逆性中的作用[J]. 植物生理学通讯, 2003, 39(4): 404-410
[33]  张景云, 赵晓东, 万新建, 熊德桃, 胡新龙, 缪南生. 小白菜耐热性鉴定及其耐热性分析[J]. 核农学报, 2014, 28(1): 146-153
[34]  Riechmann J L, Meyerowitz E M. The AP2/EREBP family of plant transcript on factors[J]. Biological Chemistry, 1998, 379(6): 633-646
[35]  崔凯荣, 戴若兰. 植物体细胞胚发生的分子生物学[M]. 北京: 科学出版社, 2000: 179

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133