全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
核农学报  2015 

DCPTA对低温下玉米叶片生理生化特征的影响

DOI: 10.11869/j.issn.100-8551.2015.03.0549, PP. 549-556

Keywords: 玉米,低温胁迫,生理机制,调控效应

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文探究了DCPTA[2-(3,4-二氯苯氧基)-乙基-二乙胺]提高玉米抗冷性的调控机理以及叶片喷施的最适浓度,从而减缓低温对玉米苗期的迫害。以丰禾1(低温敏感型)、久龙5(抗冷型)2个玉米品种为试材,在14℃/5℃(昼/夜)低温条件下,研究不同浓度的DCPTA对玉米幼苗3种抗氧化酶活性(SOD、CAT和POD)、可溶性蛋白和可溶性糖含量、膜透性和丙二醛(MDA)含量以及DPPH(1,1-二苯基-2-三硝基苯肼)活性氧清除效率的影响。结果表明,在低温胁迫条件下,不同浓度DCPTA处理提高了玉米幼苗叶片的3种抗氧化酶(SOD、CAT和POD)活性,叶片MDA含量降低,显著提高了玉米幼苗叶片可溶性糖、可溶性蛋白含量和DPPH活性氧清除效率。在低温胁迫下,50mg·L-1的DCPTA增加了渗透调节物质的含量及提高了抗氧化酶的活性和DPPH活性氧清除效率,从而减少了活性氧(ROS)及膜脂过氧化产物MDA在叶片中的积累,增强了2种不同抗冷型玉米幼苗耐低温胁迫的能力。50mg·L-1DCPTA显著提高了丰禾1和久龙5的抗低温能力,与久龙5相比,丰禾1的相对电导率和MDA含量的增加幅度平均低出11.3%;抗氧化酶活性的增加幅度平均高出140.0%;DPPH活性氧清除效率的增加幅度高出38.1%;可溶性蛋白和可溶性糖含量的增加幅度高出73.2%,说明DCPTA施用后对低温敏感型品种玉米效果更佳。本研究为探究DCPTA提高玉米苗期抗冷性的生理机制提供理论基础。

References

[1]  杨猛,庄文峰,魏湜,顾万荣,杨晔,王萌,李晶.玉米苗期受低温胁迫蛋白表达差异研究[J].核农学报,2013,27(11): 1742-1748
[2]  陈莉,朱锦红.东北亚冷夏的年代际变化[J].大气科学,2004,28(2): 241-253
[3]  王萍,李帅,闫平,朱海霞, 王秋京,宫丽娟,王晾凉,纪仰慧.黑龙江省近年低温冷害特征再探[J].自然灾害学报,2010,19(1): 143-146
[4]  朱海霞,陈莉,王秋京,吕佳佳,曲辉辉.1980-2009年期间黑龙江省玉米低温冷害年判定[J].灾害学,2012,27(1): 44-47
[5]  Fadzillah N M, Gill V, Finch R P, Burdon R H. Chilling, oxidative stress and antioxidant responses in shoot cultures of rice[J]. Planta, 1996,199(4): 552-556
[6]  Scandalios J G. Oxygen stress and superoxide dismutases[J]. Plant Physiology,1993,101(1):7-12
[7]  赵滢,艾军,王振兴,秦红艳,张庆田,徐培磊,刘迎雪,沈育杰.外源NO对NaCl胁迫下山葡萄叶片叶绿素荧光和抗氧化酶活性的影响[J].核农学报, 2013, 27(6): 867-872
[8]  赵薇,惠竹梅,林刚,唐俊峰.硒对水分胁迫下赤霞珠葡萄幼苗叶片生理生化指标的影响[J]. 果树学报, 2011, 28(6): 984-990
[9]  康云艳,杨暹,郭世荣,张营营.24-表油菜素内酯对低氧胁迫下黄瓜幼苗碳水化合物代谢的影响[J].中国农业科学, 2011, 44(12): 2495-2503
[10]  Gausman H W, Burd J D, Quisenberry J. Effect of DCPTA on cotton plant(Gossypium Hirsutum) growth and phenology[J]. Bio Technology,1985,3(3):255-257
[11]  Wilson C W, Shaw P E, Yokoyama H. Effect of gibberellic acid and 2-(3,4-dichlorophenoxy) triethylamine on nootkatone in grapefruit peel oil and total peel oil content[J]. Journal of Agricultural and Food Chemistry. 1990,38(3):656-659
[12]  Keithly J H, Yokoyama H, Gausm H W. Promotive effects of DCPTA on seedling development and growth of radish [J]. Journal of the American Society for Horticultural Science,1992,117(2):294-297
[13]  Foerster W, Becker H. Effect of plant bioregulators on valepotriate production of cell suspension cultures of valeriana wallichii and fedia cornucopiae[J]. Plant Medica,1986,52(6):33-40
[14]  Sanderson K C, Yokoyama H, Hearn W H.Effect of pre-propagation immersion of cuttings in DCPTA on growth and flowering of chrysanthemums [J].Plant Growth Regulator Bulletin,1988,16(2):8-9
[15]  叶向阳,郭奇珍.DCPTA 及其类似物的研究进展[J].农药译丛,1991,13(3):35-49
[16]  Parida A K, Das A B, Mohanty P. Defense potentials to NaCl in a mangrove, Bruguiera parviflora: Differential changes of isoforms of some antioxidative enzymes[J]. Journal of Plant Physiology, 2004, 161(5): 531-542
[17]  谢志霞. 冠菌素对棉花苗期耐盐性的调控效应及机理[D].北京:中国农业大学,2007
[18]  Zahavieva T, Yamashita K, Matsumoto H. Iron deficiency induced changes in ascorbate content and enzyme activities related to ascorbate metabolism in cucumber roots[J]. Plant and Cell Physiology, 1999, 40(3): 273-280
[19]  Miyagawa Y, Tamori M, Shigeoka S. Evaluation of the defense system in chloroplasts to photo-oxidative stress caused by paraquat using transgenic tobacco platns expressing catalase from Escherichia coli[J]. Plant and Cell Physiology, 2000, 41(3): 311-320
[20]  Kang H M, Saltveit M E. Effect of chilling on antioxidative enzymes and DPPH-radical scavenging activity of high-and low-vigour cucumber seedling radicles[J]. Plant Cell Environment, 2002,25(10):1233-1238
[21]  赵世杰,许长城,邹琦,孟庆伟.植物组织中丙二醛测定方法的改进[J].植物生理学通讯,1994,30(3): 207-210
[22]  Yokoyama H, Hayman E P, Hsu W J. Chemical bioinduction of rubber in guayule plant[J].Science,1977,197(4303):1076-1077
[23]  黄玉辉,罗海玲,陈小凤.油菜素内酯对苦瓜幼苗抗冷性的影响[J].南方农业学报,2011,42(5): 488-491
[24]  James H, Keithly J H, Yokoyama H. Regulation of crop growth and yield by tertiary amine bioregulators[C].//Gausman H W. Plant biochamical regulator. New York: Plenum Press,1991:223-246
[25]  顾万荣,李召虎,翟志席,段留生,张明才.DCPTA和DTA-6对大豆和玉米苗期叶片内源激素与氧自由基代谢的影响[J].植物遗传资源学报,2009, 10(2): 300-305
[26]  Kuk Y I, Shin J S, Burgos N R, Hwang T E, Han O, Cho B H, Jung S, Guh J O. Antioxidative enzymes offer protection from chilling damage in rice plants[J]. Crop Science, 2003, 43(6): 2109-2117
[27]  Limon-Pacheco J, Gonsebatt M E. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress[J]. Mutation Research, 2009, 674(1): 137-147
[28]  原立地.DCPTA增强玉米苗期耐冷性的生理机制和调控效应[D].哈尔滨:东北农业大学,2013
[29]  张富平,张蕊.低温下外源水杨酸对玉米幼苗保护酶活性的影响[J].玉米科学,2007,15(4): 83-85
[30]  杜朝昆,李忠光,龚明.水杨酸诱导的玉米幼苗适应高温和低温胁迫的能力与抗氧化酶系统的关系[J].植物生理学通讯,2005,41(1):19-22
[31]  张子龙.DA-6浸种对水稻幼苗生长及抗寒性的影响[J].贵州农业科学,2001,29(4):14-16
[32]  Steinbrenne H, Sies H. Protection against reactive oxygen species by selenoproteins[J]. Biochimica et Biophysica Acta, 2009, 1790(11):1478-1485
[33]  王瑞,马凤鸣,李彩凤,陈胜勇,侯静.低温胁迫对玉米幼苗脯氨酸、丙二醛含量及电导率的影响[J].东北农业大学学报, 2008,39(5): 20-23

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133