Junhui W, Kenneth W B. Programmed cell death in plants: lessons from bacteria?[J]. Trends in Plant Science, 2013, 18(3): 133-139
[2]
Mohammad N M, Saifullah A S, Mohammad M R, Dong H L, Hoduck K, Dong S L, Sang G K. Comparative Phenotypic and Physiological Characteristics of Spotted Leaf 6 (spl6) and Brown Leaf Spot2 (bl2) Lesion Mimic Mutants (LMM) in Rice[J]. Molecular Cells, 2010, 30(6):533-543
[3]
Lorrain S, Vailleau F, Balague C, Roby D. Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants[J]. Trends in Plant Science, 2003, 8(6):263-271
[4]
Hoisington D A, Neuffer M G,Virginia W. Disease lesion mimics in maize:I. Effect of genetic background, temperature,developmental age, and wounding on necrotic spot formation with Lesl[J]. Developmental Biology, 1982, 93(2):381-388.
[5]
Dietrich R A, Delaney T P, Uknes S J,Ward E R, Ryale J A, Dangl J L. Arabidopsis mutants simulating disease resistance response[J]. Cell, 1994, 77(4):565-577.
[6]
Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, Daelen R, Lee T, Diergaarde P, Groenendijk J, T?psch S, Vos P, Salamini F, Schulze-Lefert P. The barley MLO gene:a novel control element of plant pathogen resistance[J]. Cell, 1997, 88(5):695-705
[7]
Singh K, Multani D S, Khush G S. A new spotted leaf mutant in rice[J]. Rice Genetics Newsletter, 1995, 12:192-193
[8]
Kim H K, Kim Y J, Pack K H, Kim J K, Chung J I. The phenotype of the soybean disease-lesion mimic(dlm) mutant is light-dependent and associated with chloroplast function[J]. Plant Pathology Journal, 2005, 21(4):395-401
[9]
Chen X F, Fu S F, Zhang P H, Gu Z M, Liu J Z, Qian Q, Ma B J. Proteomic analysis of a disease-resistance-enhanced lesion mimic mutant spotted leaf 5 in rice[J]. Rice, 2013, 6(1):1-10
Mori M, Tomita C, Sugimoto K, Tomita C, Hasegawa M, Hayashi N, Dubouzet J G, Ochiai H, Sekimoto H, Hirochika H, Kikuchi S. Isolation and molecular characterization of a spotted leaf 18 mutant by modified activation-tagging in rice[J]. Plant Molecular Biology, 2007, 63(6):847-860
[12]
Qiao Y. Jiang W, Lee J, Lee J, Park B, Choi M, Piao P, Woo M, Roh J, Han L, Paek N, Seo H S, Koh H. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit μ1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa)[J]. New Phytologist, 2010, 185(1):258-274
[13]
Chen X F, Hao L, Pan J W, Zheng X X, Jian G H, Jin Y, Gu Z M, Qian Q, Zhou W X, Ma B J. SPL5, a cell death and defense-related gene, encodes a putative splicing factor 3b subunit 3 (SF3b3) in rice[J]. Molecular Breeding, 2012, 30(2):939-949
[14]
Yin Z, Chen J, Zeng L, Goh M, Leung H, Khush G S, Wang G. Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight[J]. Molecular Plant-Microbe Interactions, 2000, 13(8):869-876
Loon L C V, Pierpoint W S, Boller T, Conejero V. Recommendations for naming plant pathogenesis-related proteins[J]. Plant Molecular Biology Reporter, 1994, 12(3): 245-264
[17]
Loon L C V, Strien E A V. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins[J]. Physiological and Molecular Plant Pathology, 1999, 55(2): 85-97
[18]
Feng B H, Yang Y, Shi Y F, Shen H C, Wang H M, Huang Q N, Lyu X G, Wu J L. Characterization and genetic analysis of a novel rice spotted-leaf mutant HM47 with broad-spectrum resistance to Xanthomonas oryzae pv. oryzae[J]. Journal of Integrative Plant Biology, 2013, 55(5):473-483
[19]
Tsunezuka H, Fujiwara M, Kawasaki T, Shimamoto K. Proteome analysis of programmed cell death and defense signaling using the rice lesion mimic mutant cdr2[J]. Molecular Plant-Microbe Interactions, 2005, 18(1):52-59
[20]
Kim S T, Kim S G, Kang Y H, Wang Y, Kim J Y, Yi N, Kim J K, Rakwal R, Koh H J, Kang K Y. Proteomics analysis of rice lesion mimic mutant (spl1) reveals tightly localized probenazole-induced protein (PBZ1) in cells undergoing programmed cell death[J]. Journal of Proteome Research, 2008, 7(4):1750-1760.
Mackill D J, Bonman J M. Inheritance of blast resistance in near-isogenic lines of rice[J]. Phytopathology, 1992, 82(7): 746-749
[23]
Young S A, Guo A, Guikema J A, White F F, Leach J E. Rice cationic peroxidase accumulates in xylem vessels during incompatible interactions with Xanthomonas oryzaepv. Oryzae[J]. Plant Physiology, 1995, 107(4):1333-1341
[24]
Jwa N S, Agrawal J K, Tamogami S, Yonekura M, Han O, Iwahashi H, Rakwal R. Role of defense/stress-related marker genes, proteins and secondary metabolites in defining rice self-defense mechanisms[J]. Plant Physiology and Biochemistry, 2006, 44(5/6):261-273
[25]
Chern M, Fitzgerald H A, Canlas P E, Navarre D A, Ronald P C. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light[J]. Molecular Plant-Microbe Interactions, 2005, 18(6):511-520
[26]
Emilie V, Xavier G, Elsa B, Véronique C, Saindrenan P, Tharreau D, Nottéghem J, Morel J B. Preformed expression of defense is a hallmark of partial resistance to rice blast fungal pathogen Magnaporthe oryzae[J]. BMC Plant Biology, 2010, 10(206):1-17
[27]
Iwai T, Miyasaka A, Seo S, Ohashi Y. Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants[J]. Plant Physiology, 2006, 142(3):1202-1215
[28]
Shen X, Liu H, Yuan B, Li X, Xu C, Wang S. OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis[J]. Plant Cell & Environment, 2011, 34(2):179-191
[29]
Sun C, Liu L, Tang J, Lin A, Zhang F, Fang J, Zhang G, Chu C. RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice[J]. Journal of Genetics and Genomics, 2011, 38(1): 29-37