全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
核农学报  2015 

Cd2+胁迫下多年生黑麦草的生长与生理响应

DOI: 10.11869/j.issn.100-8551.2015.03.0587, PP. 587-594

Keywords: ,多年生黑麦草,生长,生理

Full-Text   Cite this paper   Add to My Lib

Abstract:

为检验多年生黑麦草对重金属Cd2+的修复潜力,本文研究了多年生黑麦草对重金属Cd2+的积累特性和生长、生理响应,采用水培法对多年生黑麦草进行0、5、10、20mg·L-1重金属Cd2+胁迫,测定了地上部和地下部的生物量、Cd浓度。结果表明,处理6d后,多年生黑麦草的生长受Cd2+显著抑制,地下部、地上部的Cd2+浓度均随着处理浓度的增加而显著升高,多年生黑麦草对Cd2+具有超量积累能力。5mg·L-1Cd2+处理6d后,多年生黑麦草的地下部、地上部生物量和根冠比分别较对照显著下降了36.83%、12.17%和27.59%,叶片的净光合速率在5mg·L-1Cd2+处理6d后较对照显著下降了23.38%,而其他的气体交换参数、光合色素含量和PSⅡ最大、潜在光化学效率均未受到Cd2+的影响;当光合有效辐射超过580μmol·m-2·s-1时,5mg·L-1Cd2+处理下的实际光化学效率和相对电子传递速率均显著低于对照,Cd2+对多年生黑麦草光反应系统电子传递的抑制程度随着光合有效辐射的升高而增加;当辐射强度达到1465μmol·m-2·s-1时,相对电子传递速率较对照显著下降了15.46%。5mg·L-1Cd2+胁迫下,多年生黑麦草叶片PSⅡ调节性能量耗散始终显著高于对照,减轻了过多激发能对光合机构的伤害。5mg·L-1Cd2+胁迫下,多年生黑麦草叶片和根系的超氧化物歧化酶、抗坏血酸过氧化物酶的活性被抑制,过氧化氢酶的活性被促进,丙二醛的含量显著提高。净光合速率、相对电子传递速率及SOD、APX活性可做为检验Cd2+对多年生黑麦草毒害的生理指标。本研究得到的结论可为在草坪草中选育重金属污染的修复植物提供参考。

References

[1]  Tschuschke S, Schmitt-Wrede H P, Greven H, Wunderlich F. Cadmium resistance conferred to yeast by a non metallothionein-encoding gene of the earthworm Enchytraeus[J]. The Journal of Biology Chemistry,2002, 277(7): 5120-5125
[2]  黄益宗,朱永官. 森林生态系统镉污染研究进展[J]. 生态学报,2004, 24(1): 101-108
[3]  环境保护部,国土资源部.全国土壤污染状况调查公报[EB/OL]. (2014-04-17)[2014-04-20]http://www.mlr.gov.cn/xwdt/jrxw/201404/ t20140417_1312998. htm
[4]  Glass D J. Economic potential of phytoremediation[C]. //Raskin I,Ensley B D. Phytoremediation of toxic metals using plants to clean up the environment. New York:John Wiley&Sons Inc. 2000:15-31
[5]  Baker A J M,Reeves R D,Hajar A S M. Heavy metal accumulation and tolerance in British populations of metallophyte Thlaspi caerulescen [J]. New Phytologist,1994, 127(16):61- 68
[6]  Salt D E, Blaylock M, Kumar P B A N. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants [J]. Nature Biotechnology, 1995,13(5):468-474
[7]  Dahmani-Muller H, Van O F, Gelie B. Strategies of heavy metal uptake by three plant species growing near a metal smelter[J]. Environmental Pollution, 2000,109(2):231-238
[8]  马博英. 多年生黑麦草的逆境生理研究进展[J]. 生物学杂志,2010,27(2):58-61
[9]  多立安,高玉葆,赵树兰.重金属递进胁迫对黑麦草初期生长的影响[J].植物研究,2006,2(1): 117-122.
[10]  王慧忠,李鹃.重金属镉、铅对多年生黑麦草细胞内几种抗氧化酶基因表达的影响[J].农业环境科学学报2008,27(6):2371-2376
[11]  高俊凤. 植物生理学实验指导[M]. 北京:高等教育出版社,2006
[12]  Lu L L, Tian S K, Yang X E, Wang X C, Brown P, Li T Q, He Z L.Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii [J].Journal of Experimental Botany, 2008,59(11): 3203-3213
[13]  孙琴,袁信芳,王晓蓉. 环境因子对小麦体内镉的生物毒性和植物络合素合成的影响[J]. 应用生态学报, 2005,16(7):1360-1365
[14]  许大全. 光合作用气孔限制分析中的一些问题[J]. 植物生理学通讯,1997,33(4):241-244
[15]  Baker N R. Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo[J]. Annual Review of Plant Biology,2008,59(1):89- 113
[16]  李兆君, 马国瑞, 徐建民. 植物适应重金属Cd胁迫的生理及分子生物学机理[J]. 土壤通报, 2004,35(2):234-238
[17]  张玉秀,柴团耀, Gérard B. 植物耐重金属机理研究进展[J]. 植物学报,1999, 41 (5):453-457
[18]  张军,束文圣. 植物对重金属镉的耐受机制[J].植物生理与分子生物学学报, 2006, 32 (1): 1-8
[19]  Iannelli M A, Pietrini F, Fiore L, Petrilli L, Massacci A. Antioxidant response to cadmium in Phragmites australis plants[J]. Plant Physiology Biochemistry, 2002,40(11): 977-982
[20]  Ron M. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7(9):405-410

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133