Riechmann J L, Meyerowitz E M. MADS domain proteins in plant development[J]. Biological Chemistry, 1997,378(10): 1079-1101
[2]
Messenguy F, Dubois E. Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development[J]. Gene, 2003,316(1): 1-21
[3]
Kaufmann K, Melzer R, Theissen G. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants[J]. Gene, 2005,347(2): 183-198
[4]
Schwarz-Sommer Z S, Huijserp H P, Flor P F. Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throught flower development[J]. The EMBO Journal, 1992,11(1): 251-263
[5]
Krizek B A, Meyerowitz E M. Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ identity proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(9): 4063-4070
[6]
Davies B, Egea-Cortines M, de Andrade S E, Saedler H, Sommer H. Multiple interactions amongst floral homeotic MADS box proteins[J]. The EMBO Journal, 1996, 15(16): 4330-4343
[7]
Kramer E M, Dorit R L, Irish V F. Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages[J]. Genetics, 1998,149(2): 765-783
[8]
Henschel K, Kofuji R, Hasebe M, Saedler H, Munster T, Theissen G. Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens[J]. Molecular Biololgy and Evolution, 2002,19(6): 801-814
[9]
Arora R, Agarwal P, Ray S, Singh A K, Singh V P, Tyagi A K, Kapoor S. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress[J]. BMC Genomics, 2007, 8(1): 242
[10]
Theissen G, Melzer R. Molecular mechanisms underlying origin and diversification of the angiosperm flower[J]. Annals of Botany, 2007,100(3): 603-619
[11]
Weigel D, Meyerowitz E M. The ABCs of floral homeotic genes[J]. Cell, 1994, 95(7): 203-209
[12]
Ma H, de Pamphilis C. The ABCs of floral evolution[J].Cell, 2000, 101(1): 5-8
[13]
Hartmann U, Hohmann S, Nettesheim K, Wisman E, Saedler H, Huijser P. Molecular cloning of SVP : a negative regulator of the floral transition in Arabidopsis[J]. The Plant Journal, 2000, 21(4): 351-360
[14]
Liljegren S J, Ditta G S, Eshed Y, Savidge B, Bowman J L, Yanofsky M F. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis[J]. Nature, 2000, 404(6779): 766-770
[15]
Yu H, Xu Y, Tan E L, Kumar P P. AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals[J].Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(25): 16336-16341
[16]
Michaels S D, Ditta G, Gustafson-Brown C, Pelaz S, Yanofsky M, Amasino R M. AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization[J]. The Plant Journal, 2003, 33(5): 867-874
[17]
Searleet I, He Y, Turck F, Vincent C, Fornara F, Krober S. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis[J]. Genes & Development, 2006,20(7): 898-912
[18]
Lee J H, Yoo S J, Park S H, Hwang I, Lee J S, Ahn J H. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis[J]. Genes & Development, 2007, 21(4): 397-402
[19]
Moyle R, Fairbairn D J, Ripi J, Crowe M, Botella J R. Developing pineapple fruit has a small transcriptome dominated by metallothionein[J]. Journal of Experimental Botany, 2005,56(409): 101-112
[20]
Zhang L, Xu Y, Ma R. Molecular cloning, identification, and chromosomal localization of two MADS box genes in peach (Prunus persica)[J]. Journal of Genetics and Genomics, 2008,35(6): 365-372
[21]
Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J A. MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus[J]. Science, 2002,296(5566): 343-346
[22]
Ito Y, Kitagawa M, Ihashi N, Yabe K, Kimbara J, Yasuda J, Ito H, Inakuma T, Hiroi S, Kasumi T. DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN[J]. The Plant Journal, 2008,55(2): 212-223
[23]
Ireland H S, Yao J L, Tomes S, Sutherland P W, Nieuwenhuizen N, Gunaseelan K, Winz R A, David K M, Schaffer R J. Apple SEPALLATA1/2-like genes control fruit flesh development and ripening[J]. The Plant Journal, 2013,73(6): 1044-1056
[24]
Ferrándiz C, Liljegren S J, Yanofsky M F. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development[J]. Science, 2000, 289 (5478): 436-438
[25]
Yang XL, Wu F, Lin XL, Du XQ, Chong K, Gramzow L, Schilling S, Becker A, Theiβen G, Meng Z. Live and let die -The Bsister MADS-box gene OsMADS 29 controls the degeneration of cells in maternal tissues during seed development of rice (Oryza sativa)[J]. PLoS ONE, 2012,7(12): e51435
[26]
Tapia-López R, García-Ponce B, Dubrovsky J G, Garay-Arroyo A, Pérez-Ruíz R V, Kim S H. An AGAMOUS-related MADS-box gene, XAL1(AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis[J]. Plant Physiology, 2008,146(3): 1182-1192
[27]
Gan Y, Bernreiter A, Filleur S, Abram B, Forde B G. Overexpressing the ANR1 MADS-box gene in transgenic plants provides new insights into its role in the nitrate regulation of root development[J]. Plant and Cell Physiology, 2012, 53(6): 1003-1016
[28]
Arús P, Verde I, Sosinski B, Zhebentyayeva T, Abbott A G. The peach genome[J]. Tree Genetics & Genomes, 2012, 8(3): 531-547
[29]
Crooks G E, Hon G, Chandonia J M, Brenner S E. WebLogo: A sequence logo generator[J]. Genome Research, 2004,14 (14): 1188-1190
[30]
Zhao T, Liang D, Wang P, Liu J Y, Ma F W. Genome-wide analysis and expression profiling of the DREB transcription factor gene family inMalus under abiotic stress[J]. Molecular Genetics and Genomics, 2012,287(5): 423-436
Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0[J]. Molecular Biology and Evolution, 2007,24(8): 1596-1599
Shu Y, Yu D, Wang D, Guo D, Guo C. Genome-wide survey and expression analysis of the MADS-box gene family in soybean[J]. Molecular Biology Reports, 2013, 40(6): 3901-3911
Tadiello A, Pavanello A, Zanin D, Caporali E, Colombo L, Rotino G L, Trainotti L, Casadoro G. A PLENA-like gene of peach is involved in carpel formation and subsequent transformation into a fleshy fruit[J]. Journal of Experimental Botany, 2009,60(2): 651-661
[38]
Jiménez S, Lawton-Rauh A L, Reighard G L, Abbottnd A G, Bielenberg D G. Phylogenetic analysis and molecular evolution of the dormancy associated MADS-box genes from peach[J]. BMC Plant Biology, 2009,9(1): 81
[39]
Paenicová L, de-Folter S, Kieffer M, Horner D S, Favalli C, Busscher J, Cook H E, Ingram R M, Kater M M, Davies B, Angenent G C, Colombo L. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: New openings to the MADS world[J]. The Plant Cell, 2003, 15(7): 1538-1551
[40]
Leseberg C H, Li A, Kang H, Duvall M, Mao L. Genome-wide analysis of the MADS-box gene family in Populus trichocarpa[J]. Gene, 2006,378(15): 84-94
[41]
Díaz-Riquelme J, Lijavetzky D, Martínez-Zapater J M, Carmona M J. Genome-wide analysis of MIKCC-type MADS box genes in grapevine[J]. Plant Physiology, 2009, 149(1): 354-369
[42]
Hu L, Liu S. Genome-wide analysis of the MADS-box gene family in cucumber[J]. Genome, 2012,55(3): 245-256