全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
核农学报  2015 

近红外光谱联合CARS-PLS-LDA的山茶油检测

DOI: 10.11869/j.issn.100-8551.2015.05.0925, PP. 925-931

Keywords: 近红外光谱,掺假判别,CARS,PLS-LDA,山茶油

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了寻找快速判别山茶油掺假的检测方法,本研究利用近红外光谱技术对掺杂大豆没油山茶油进行掺假检测研究.试验在350~1800nm波段范围内采集样本的透射光谱,利用CARS方法筛选重要的波长变量,应用偏最小二乘-线性判别分析(PLS-LDA)建立山茶油掺假的判别模型,并与未经变量优选的判别模型进行比较.结果表明,近红外光谱技术联合CARS-PLS-LDA方法可以有效判别纯山茶油和掺假山茶油,校正集、预测集及独立样本组样本的判别正确率、灵敏度及特异性均为100%.CARS-PLS-LDA判别模型性能优于未经变量优选的判别模型,表明CARS方法可以有效筛选重要波长变量,能简化判别模型及提高判别模型的稳定性和判别精度.本研究可为山茶油掺假快速检测提供理论依据.

References

[1]  张菊华, 朱向荣, 尚雪波, 帅鸣. 近红外光谱结合偏最小二乘法用于纯茶油中掺伪菜籽油和大豆油的定量分析 [J]. 食品工业科技, 2012, 33(3): 334-336
[2]  温珍才, 孙通, 耿响, 刘木华. 可见/近红外联合UVE-PLS-LDA鉴别压榨和浸出山茶油 [J]. 光谱学与光谱分析, 2013, 33(9): 2354-2358
[3]  Li H, Liang Y, Xu Q, Cao D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration [J]. Analytica Chimica Acta, 2009, 648(1): 77-84
[4]  Zou X B, Zhao J W, Mao H P, Shi J Y, Yin X P, Li Y X. Genetic algorithm interval partial least squares regression combined successive projections algorithm for variable selection in near-infrared quantitative analysis of pigment in cucumber leaves [J]. Applied Spectroscopy, 2010, 64(7): 786-794
[5]  杨冬风, 尹淑欣, 姜丽, 高树仁. 玉米种子活力近红外光谱智能检测方法研究[J]. 核农学报, 2013, 27(7): 957-961
[6]  冯光, 杨亚春, 宋丰顺, 李泽福, 杨剑波, 李莉. 近红外反射技术建立合肥地区精米直链淀粉含量测定模型 [J]. 核农学报, 2012, 26(6): 942-946
[7]  田海清, 应义斌, 徐惠荣, 陆辉山, 傅霞萍. 西瓜可溶性固形物含量近红外透射检测技术 [J]. 农业机械学报, 2007, 38(5): 111-113
[8]  吴瑞梅, 艾施荣, 吴彦红, 刘木华. 基于近红外光谱的绿茶滋味品质估测模型 [J]. 核农学报, 2013, 27(10): 1495-1500
[9]  屠振华, 朱大洲, 籍保平, 陈红茜, 庆兆珅. 基于近红外光谱技术的蜂蜜掺假识别 [J]. 农业工程学报, 2011, 27(11): 382-387
[10]  Nie P C, Wu D, Sun D W, Cao F, Bao Y D, He Y. Potential of visible and near infrared spectroscopy and pattern recognition for rapid quantification of notoginseng powder with adulterants [J]. Sensors, 2013, 13(10): 13820-13834
[11]  Cayuela J A, Weiland C. Intact orange quality prediction with two portable NIR spectrometers [J]. Postharvest Biology and Technology, 2010, 58(2): 113-120
[12]  江晓东, 石姣姣, 李映雪, 周志龙, 徐家平. 不同筋力冬小麦冠层反射光谱的差异分析 [J]. 核农学报, 2014, 28(8): 1503-1509
[13]  Wu D, Feng S, He Y. Short-wave near-infrared spectroscopy of milk powder for brand identification and component analysis [J]. Journal of Dairy Science, 2008, 91(3): 939-949
[14]  Moreiraa E D T, Pontesa M J C, Galv?ob R K H, Araujo M C U. Near infrared reflectance spectrometry classification of cigarettes using the successive projections algorithm for variable selection [J]. Talanta, 2009, 79(5): 1260-1264
[15]  庄小丽, 相玉红, 强洪, 张卓勇, 邹明强, 张孝芳. 近红外光谱和化学计量学方法用于橄榄油品质分析与掺杂量检测 [J].光谱学与光谱分析, 2010, 30(4): 933-936
[16]  Christy A A, Kasemsumran S, Du Y., Ozaki Y. The detection and quantification of adulteration in olive oil by near-infrared spectroscopy and chemometrics [J]. Analytical Sciences, 2004, 20(6): 935-940
[17]  翁欣欣, 陆峰, 王传现, 亓云鹏. 近红外光谱-BP神经网络-PLS 法用于橄榄油掺杂分析 [J]. 光谱学与光谱分析, 2009, 29(12): 3283-3287
[18]  Ozdemir D, Ozturk B. Near Infrared Spectroscopic Determination of Olive Oil Adulteration with Sunflower and Corn Oil [J]. Journal of Food and Drug Analysis, 2007, 15(1): 40-47
[19]  李娟, 范璐, 毕艳兰, 屈凌波, 周展明, 吴存荣. 红外、近红外光谱-簇类的独立软模式方法识别植物调和油脂 [J]. 分析化学, 2010, 38(4): 475-482
[20]  Sinelli N, Cerretani L, Di Egidio V, Bendini A, Casiraghi E. Application of near (NIR) infrared and mid (MIR) infrared spectroscopy as a rapid tool to classify extra virgin olive oil on the basis of fruity attribute intensity [J]. Food Research International, 2010, 43(1): 369-375
[21]  刘福莉, 陈华才, 姜礼义, 胡献恩. 近红外透射光谱聚类分析快速鉴别食用油种类 [J]. 中国计量学院学报, 2008, 19(3): 278-282
[22]  Ozturk B, Yalcin A, Ozdemir D. Determination of olive oil adulteration with vegetable oils by near infrared spectroscopy coupled with multivariate calibration [J]. Journal of Near Infrared Spectroscopy, 2010, 18(3): 191-201
[23]  吴静珠, 刘翠玲, 李慧, 孙晓荣. 近红外光谱技术在食用油种类鉴别及脂肪酸含量检测中的应用 [J]. 北京工商大学学报:自然科学版, 2010, 28(5): 56-59
[24]  Mignani A G, Ciaccheri L, Ottevaere H, Thienpont H, Conte L, Marega M, Cichelli A, Attilio C, Cimato A. Visible and near-infrared absorption spectroscopy by an integrating sphere and optical fibers for quantifying and discriminating the adulteration of extra virgin olive oil from Tuscany [J]. Analytical and Bioanalytical Chemistry, 2011, 399(3): 1315-1324
[25]  周志琴, 陈斌, 颜辉. 二维相关近红外光谱快速鉴别食用植物油种 [J]. 中国粮油学报, 2011, 26(9): 115-118
[26]  Yang H, Irudayaraj J, Paradkar M M. Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy [J]. Food Chemistry, 2005, 93: 25-32
[27]  孙通, 胡田, 许文丽, 刘木华. 基于UVE-GA 变量优选的山茶油可见/近红外光谱掺假鉴别 [J]. 中国油脂, 2013, 38(10): 75-79
[28]  Wang L, Lee F S C, Wang X, He Y. Feasibility study of quantifying and discriminating soybean oil adulteration in camellia oils by attenuated total reflectance MIR and fiber optic diffuse reflectance NIR [J]. Food Chemistry, 2006, 95: 529-536
[29]  Li S, Zhu X, Zhang J, Li G, Su D, Shan Y. Authentication of Pure Camellia Oil by Using Near Infrared Spectroscopy and Pattern Recognition Techniques [J]. Journal of Food Science, 2012, 77(4): 374-380

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133