全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
核农学报  2015 

植物CBL基因家族的研究进展

DOI: 10.11869/j.issn.100-8551.2015.05.0892, PP. 892-898

Keywords: Ca2+信号,CBL,CIPK,非生物逆境,信号转导

Full-Text   Cite this paper   Add to My Lib

Abstract:

细胞中游离的Ca2+是植物细胞中普遍存在的第二信使,类钙调神经素B亚基蛋白CBL作为一种特殊的钙感受器在植物生长发育和逆境胁迫响应过程中发挥重要作用.本文主要对植物CBL家族的起源与进化、蛋白结构、亚细胞定位以及CBL的功能进行综述,并对今后钙感受器CBL家族的研究重点和发展方向进行了展望.

References

[1]  Verslues P E, Batelli G, Grillo S, Agius F, Kim Y S, Zhu J, Agarwal M, Katiyar Agarwal S, Zhu J K. Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H2O2 signaling in Arabidopsis thaliana[J]. Molecular and Cellular Biology, 2007, 27(22): 7771-7780
[2]  Drerup M M, Schlucking K, Hashimoto K, Manishankar P, Steinhorst L, Kuchitsu K, Kudla J. The Calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF[J]. Molecular Plant, 2013, 6(2): 559-569
[3]  Nozawa A, Koizumi N, Sano H. An Arabidopsis SNF1-related protein kinase, AtSR1, interacts with a calcium-binding protein, AtCBL2, of which transcripts respond to light[J]. Plant and Cell Physiology, 2001, 42(9): 976-981
[4]  Kim K N, Cheong Y H, Grant J J, Pandey G K, Luan S. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis[J]. The Plant Cell Online, 2003, 15(2): 411-423
[5]  Pandey G K, Grant J J, Cheong Y H, Kim B G, Luan S. Calcineurin-B-like protein CBL9 interacts with target kinase CIPK3 in the regulation of ABA response in seed germination[J]. Molecular Plant, 2008, 1(2): 238-248
[6]  Torre F, Gutierrez-Beltran E, Pareja-Jaime Y, Chakravarthy S, Martin GB, Pozo O. The tomato calcium sensor Cbl10 and its interacting protein kinase Cipk6 define a signaling pathway in plant immunity[J]. Plant Cell, 2013, 25(7): 2748-2764
[7]  Li R, Zhang J, Wei J, Wang H, Wang Y, Ma R. Functions and mechanisms of the CBL-CIPK signaling system in plant response to abiotic stress[J]. Progress in Natural Science, 2009, 19(6): 667-676
[8]  Kim K N. Stress responses mediated by the CBL calcium sensors in plants[J]. Plant biotechnology reports, 2013, 7(1): 1-8
[9]  Mahs A, Steinhorst L, Han J P, Shen L K, Wang Y, Kudla J. The calcineurin B-like Ca2+ sensors CBL1 and CBL9 function in pollen germination and pollen tube growth in Arabidopsis[J]. Molecular Plant, 2013, 6(4): 1149-1162
[10]  Kurusu T, Hamada J, Nokajima H, Kitagawa Y, Kiyoduka M, Takahashi A, Hanamata S, Ohno R, Hayashi T, Okada K, Koga J, Hirochika H, Yamane H, Kuchitsu K. Regulation of microbe-associated molecular pattern-induced hypersensitive cell death, phytoalexin production, and defense gene expression by calcineurin B-like protein-interacting protein kinases, OsCIPK14/15, in Rice Cultured Cells[J]. Plant Physiology, 2010, 153(2): 678-692
[11]  Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress[J]. The Plant Cell Online, 2002, 14(S1): S165-S183
[12]  Snedden W A, Fromm H. Calmodulin as a versatile calcium signal transducer in plants[J]. New Phytologist, 2001, 151(1): 35-66
[13]  郑仲仲,沈金秋,潘伟槐,潘建伟.植物钙感受器及其介导的逆境信号途径[J].遗传, 2013, 35(7): 875-884
[14]  Liu J, Zhu J K. A calcium sensor homolog required for plant salt tolerance[J]. Science, 1998, 280(5371): 1943-1945
[15]  Kudla J, Xu Q, Harter K, Gruissem W, Luan S. Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals[J]. Proceedings of the National Academy of Sciences, 1999, 96(8): 4718-4723
[16]  Kolukisaoglu ü, Weinl S, Blazevic D, Batistic O, Kudla J. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks[J]. Plant Physiology, 2004, 134(1): 43-58
[17]  郭喜英.植物CBL基因家族的进化与表达分析及玉米部分CBL基因的功能初探[D].北京:中国农业大学, 2007:1-4
[18]  Batisti? O, Kudla J. Plant calcineurin B-like proteins and their interacting protein kinases[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2009, 1793(6): 985-992
[19]  Ren X L, Qi G N, Feng H Q, Zhao S, Zhao S S, Wang Y, Wu W H. Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K+homeostasis in Arabidopsis[J]. The Plant Journal, 2013, 74(2): 258-266
[20]  高远, 田李, 秦松. 植物进化中的正选择作用[J]. 植物学通报, 2008, 25(4): 401-406
[21]  Kong H, Leebens-Mack J, Ni W, Ma H. Highly heterogeneous rates of evolution in the SKP1 gene family in plants and animals: functional and evolutionary implications[J]. Molecular Biology and Evolution, 2004, 21(1): 117-128
[22]  Kong H, Landherr L L, Frohlich M W, Leebens Mack J, Ma H, DePamphilis C W. Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth[J]. The Plant Journal, 2007, 50(5): 873-885
[23]  张俊文, 魏建华. CBL-CIPK信号系统在植物应答逆境胁迫中的作用与机制[J]. 自然科学进展, 2008, 18(8): 847-855
[24]  Kim B G, Waadt R, Cheong Y H, Pandey G K, Dominguez Solis J R,Schültke S, Lee S C, Kudla J, Luan S. The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis[J]. The Plant Journal, 2007, 52(3): 473-484
[25]  Weinl S, Kudla J. The CBL-CIPK Ca2+-decoding signaling network: function and perspectives[J]. New Phytologist, 2009, 184(3): 517-528
[26]  Batisti? O, Waadt R, Steinhorst L, Held K, Kudla J. CBL-mediated targeting of CIPKs facilitates the decoding of calcium signals emanating from distinct cellular stores[J]. The Plant Journal, 2010, 61(2): 211-222
[27]  Wang Y, Wu W H. Potassium transport and signaling in higher plants[J]. Annual Review of Plant Biology, 2013, 64: 451-476
[28]  Oh S I, Park J, Yoon S, Kim, Y, Park S, Ryu M, Nam M J, Ok S H, Kim J K, Shin J S, Kim K N. The Arabidopsis calcium sensor calcineurin B-like 3 inhibits the 5'-methylthioadenosine nucleosidase in a calcium-dependent manner[J]. Plant Physiology, 2008, 148(4): 1883-1896
[29]  唐仁杰, 杨阳, 郁萌萌, 张洪霞. 植物CBL-CIPK信号系统研究进展[J]. 东北农业大学学报, 2013, 44(4):149-155
[30]  Luan S. The CBL-CIPK network in plant calcium signaling[J]. Trends in Plant Science, 2009, 14(1): 37-42
[31]  Halfter U, Ishitani M, Zhu J K. TheArabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3[J]. Proceedings of the National Academy of Sciences, 2000, 97(7): 3735-3740
[32]  Liu J, Ishitani M, Halfter U, Kim C S, Zhu J K. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance[J]. Proceedings of the National Academy of Sciences, 2000, 97(7): 3730-3734
[33]  Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, Shang M, Chen S, Pardo J M, Guo Y. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress[J]. The Plant Cell Online, 2007, 19(4): 1415-1431
[34]  Cheong Y H, Kim K N, Pandey G K, Gupta R, Grant J J, Luan S. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis[J]. The Plant Cell Online, 2003, 15(8): 1833-1845
[35]  Cheong Y H, Sung S J, Kim B G, Cheong, Yong Hwa, Sung, Sun Jin, Kim, Beom-Gi, Pandey G K, Cho J S, Kim K N, Luan S. Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis[J]. Molecules and Cells, 2010, 29(2): 159-165
[36]  Martínez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu J K, Pardo J M, Quintero F J. Conservation of the salt overly sensitive pathway in rice[J]. Plant Physiology, 2007, 143(2): 1001-1012
[37]  Wang M, Gu D, Liu T, Wang Z, Guo X, Hou W, Bai Y, Chen X, Wang G. Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance[J]. Plant Molecular Biology, 2007, 65(6): 733-746
[38]  Tang R J, Yang Y, Yang L, Liu H,Wang C T,Yu M M,Gao X S, Zhang H X. Poplar calcineurin B-like proteins PtCBL10A and PtCBL10B regulate shoot salt tolerance through interaction with PtSOS2 in the vacuolar membrane[J]. Plant Cell Environment, 2014,37:573-589
[39]  Zhang H, Yin W, Xia X. Calcineurin B-Like family in Populus: comparative genome analysis and expression pattern under cold, drought and salt stress treatment[J]. Plant Growth Regulation, 2008, 56(2): 129-140
[40]  武维华. 植物响应低钾胁迫及钾营养高效的分子调控网络机制研究[J]. 中国基础科学, 2007, (2): 18
[41]  张和臣, 叶楚玉, 夏新莉, 尹伟伦. 逆境条件下植物 CBL-CIP 信号途径转导的分子机制[J]. 分子植物育种, 2009, 7(1): 143-148
[42]  Lee S C, Lan W Z, Kim B G, Li L, Cheong Y H, Pandey G K, Lu G, Buchanan B B, Luan S. A protein phosphorylation/dephosphorylation network regulates a plant potassium channel[J]. Proceedings of the National Academy of Sciences, 2007, 104(40): 15959-15964
[43]  Liu L L, Ren H M, Chen L Q, Wang Y, Wu W H. A protein kinase, calcineurin B-like protein-interacting protein Kinase 9, interacts with calcium sensor calcineurin B-like Protein 3 and regulates potassium homeostasis under low-potassium stress inArabidopsis[J]. Plant Physiology, 2013, 161(1): 266-277
[44]  Held K, Pascaud F, Eckert C, Gajdanowicz P, Hashimoto K, Corratgé-Faillie C, Offenborn J N, Lacombe B, Dreyer I, Thibaud J B. Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex[J]. Cell Research, 2011, 21(7): 1116-1130
[45]  D'ngelo C, Weinl S, Batistic O, Pandey G K, Cheong Y H, Schültke S, Albrecht V, Ehlert B, Schulz B, Harter K. Alternative complex formation of the Ca2+-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis[J]. The Plant Journal, 2006, 48(6): 857-872
[46]  Ho C H, Lin S H, Hu H C, Tsay Y F. CHL1 functions as a nitrate sensor in plants[J]. Cell, 2009, 138(6): 1184-1194

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133