全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
核农学报  2009 

区域水稻穗期叶片氮素的遥感估测初探

, PP. 364-368

Keywords: 水稻氮素,遥感,统计模型,神经网络,CBERS-1影像

Full-Text   Cite this paper   Add to My Lib

Abstract:

快速、无损、准确地监测水稻穗期氮素状况,对于诊断水稻生殖生长特征、提高氮肥运筹水平具有重要意义。本研究在浙江省海宁市晚稻试验点进行田间取样试验,并获取同时期CBERS-1遥感数据,分析了试验点晚稻穗期叶片氮素与CBERS-1影像冠层光谱信息之间的关系。结果表明,水稻穗期叶片氮素含量与同期CBERS-1影像的光谱信息NDVI之间有良好的相关性,可以建立水稻穗期叶片氮素含量反演的相关统计模型。但由于遥感影像特征与水稻穗期叶片氮素含量之间存在较复杂的非线性关系,因此统计模型反演精度不够理想。因而,又尝试运用BP人工神经网络方法来反演水稻穗期叶片氮素含量,发现BP人工神经网络模型具有很强的非线性拟合能力,与统计模型相比,其水稻穗期叶片氮素含量的反演精度有显著提高。由此表明,利用CBERS-1遥感影像可以对水稻穗期叶片氮素含量进行建模并反演,能够在较大的范围里估测水稻的氮素营养状况。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133