Ashraf M, Akbar M, Salim M. Genetic improvement in physiological traits of rice yield. In: Slafer GA (ed) Genetic improvement of field crops[J]. Marcel Dekker Incorporates New York, 1994, 413-455
[5]
Lafitte H R, Travis R L. Photosynthesis and assimilate partitioning in closely related lines of rice exhibiting different sink: source relationships[J]. Crop Science, 1984, 24:447-452
Gladun I V, Karpov E A. Distribution of assimilates from the flag leaf of rice during the reproductive period of development[J]. Russian Journal of Plant Physiology,1993,40:215-219
Yue B, Xue W Y, Luo L J, Xing Y Z, QTL analysis for flag leaf characteristics and their relationships with yield and yield traits in rice[J]. Acta Genetica Sinica, 2006, 33:824-832
[12]
Shen Bo, Yu Wei-dong, Du Jing-hong, Fan Ye-yang, Wu Ji-rong, Zhuang Jie-Yun. Validation and dissection of quantitative trait loci for leaf traits in interval RM4923-RM402 on the short arm of rice chromosome 6[J]. Genetics, 2011,90(1): 39-44
[13]
Mei H W, Xu J L, Li Z K, Yu X Q, Guo L B, Wang Y P, Ying C S, Luo L J. QTLs influencing panicle size detected in two reciprocal introgressive line (IL) populations in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2006, 112: 648-656
[14]
Xing Y Z, Tang W J, Xue W Y, Xu C G, Zhang Q F. Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single. Mendelian factor in rice[J]. Theoretical and Applied Genetics, 2008, 116:789-796
[15]
Yuan Guo, Hong De lin. Novel pleiotropic loci controlling panicle architecture across environments in japonicarice (Oryza sativa L.)[J]. Journal of Genetics and Genomics, 2010, 37(8): 533-544
[16]
Ding Xipeng, Li Xiaokai, Xiong Lizhong. Evaluation of near-isogenic lines for drought resistance QTL and fine mapping of a locus affecting flag leaf width, spikelet number, and root volume in rice[J]. Theoretical and Applied Genetics, 2011,123(1):43-50
[17]
Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production[J]. Science, 2005, 309:741-745
[18]
Thomson M J, Tai T H, Mc Clung A M, Lai X H, Hinga M E,Lobos K B, Xu Y, Martinez C P, McCouch S R. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jeverson[J]. Theoretical and Applied Genetics, 2003, 107: 479-493
[19]
Akihiko K, Babu R C, Boopathi N M, Fukai S. Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environment[J]. Field Crops Research, 2008, 109:1-2
[20]
Setter T L, Laureles E V. The beneficial effect of reduced elongation growth on submergence tolerance of rice[J]. Journal of Experimental Botany, 1996, 47(303): 1551-1559
[21]
Sarkar R K, De R N, Reddy J N, Ramakrishnayya G. Studies on the submergence tolerance mechanism in relation to carbohydrate, chlorophyll and specific leaf weight in rice(Oryza sativa L.)[J]. Journal of Plant Physiology, 1996, 149:623-625
[22]
陈温福,徐正进.水稻超高产育种理论与方法[M].北京:科学出版社,2007:94-98
[23]
Zhao X Q, Xu J L, Zhao M, Lafitte R, Zhu L H, Fu B Y, Gao M Y, Li Z K. QTLs affecting morph-physiological traits related to drought tolerance detected in overlapping introgression lines of rice (Oryza sativa L.)[J]. Plant Science, 2008, 174: 618-625
[24]
Xu J L, Lafitte H R, Gao Y M, Fu B Y, Torres R, Li Z K. QTLs for drought escape and tolerance identified in a set of random introgression lines of rice[J]. Theoretical and Applied Genetics, 2005, 111:1642-1650
Cui K H, Peng S B, Xing Y Z, Yu S B, Xu C G, Zhang Q. Molecular dissection of the genetic relationships of source-sink and transport tissue with yield traits in rice[J]. Theoretical and Applied Genetics, 2003, 106:649-658
[30]
Foyer C H. The basis for source-sink interaction in leaves[J]. Plant Physiol Biochemistry, 1987, 25: 649-657
[31]
Gladun I V, Karpov E A. Distribution of assimilates from the flag leaf of rice during the reproductive period of development[J]. Russian Journal of Plant Physiology, 1993, 40: 215-219
[32]
Hirota O, Oka M, Takeda T. Sink activity estimation by sink size and dry matter increase during the ripening stage of barley (Hordeum vu/gare) and rice (Oryza sativa)[J]. Annals of Botany, 1990, 65: 349-354
[33]
Herzog H. Relation of source and sink during the grain-filling period in wheat and some aspects of its regulation[J]. Physiologia Plantarum, 1982, 56:155-160
[34]
Ghosh S, Sahai V N, Saran S. Role of flag leaf on grain yield and spikelet sterility in rice cultivars[J]. Oryza, 1990, 27:87-89
[35]
Hsu P, Walton P D. Relationships between yield and its components and structures above the flag leaf node in spring wheat[J]. Crop Science, 1971, 11:190-193
Li Z K, Luo L J, Mei H W, Wang D L, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H, Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. Ⅰ. Biomass and grain yield[J]. Genetics, 2001, 158:1737-1753
[39]
Fan C, Xing Y, Mao H, Lu T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theoretical and Applied Genetics, 2006, 112(6): 1164-1171
[40]
Wang P, Zhou G L, Cui K H, Li Z K, Yu S B. Clustered QTL for source leaf size and yield traits in rice (Oryza sativa L.)[J]. Molecular Breeding, 2012, 29: 99-113
[41]
Xu J L, Yu S B, Luo L J, Zhong D B, Mei H W, Li Z K. Molecular dissection of the primary sink size and its related traits in rice[J]. Plant Breeding, 2004, 123(1):43-50
[42]
Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics, 2007, 39:623-630
[43]
Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae,H, Konishi S, Yano, M. Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nature Genetics, 2008, 40:1023-1028
[44]
Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L, Zhai H Q, Wan J M, Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Research, 2008,18:1199-1209
[45]
Xue Weiya, Xing Yongzhong, Weng Xiaoyu, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J]. Nature Genetics, 2008, 40:761-767
[46]
Yan W H, Wang P, Chen H X, Zhou H J, Li Q P, Wang C R, Ding Z H, Zhang Y S, Yu S B, Xing Y Z, Zhang Q. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice[J]. Molecular Plant, 2011, 4:319-330
Chen H, He H, Zou Y, Chen W, Yu R, Liu X, Yang Y, Gao Y M, Xu J L, Fan L M, Li Y, Li Z K, Deng X W. Development and application of a set of breeder-friendly SNP markers for genetic analyses and molecular breeding of rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2011, 123(6):869-79
[50]
SAS Institute. SAS/STAT User’s Guide[R]. Cary NC, USA: SAS Institute, 1996:25-36
[51]
International Rice Genome Sequencing Project. The map-based sequence of the rice genome[J]. Nature, 2005,436:793-800
Cheng Lirui, Wang Yun, Meng Lijun, Hu Xia, Cui Yanru, Sun Yong, Zhu Linghua, Ali Jauhar, Xu Jianlong, Li Zhikang. Identification of salt-tolerant QTLs with strong genetic background effect using two sets of reciprocal introgression lines in rice[J].Genome,2012,55(1):45-55
[56]
Lin H X, Qian H R, Zhuang J Y, Lu J, Min S K, Xiong Z M, Huang N, Zheng K L. RFLP mapping of QTLs for yield and related characters in rice(Oryza sativa L)[J]. Theoretical and Applied Genetics, 1996, 92:920-927
[57]
Wu P, Zhang G and Huang N. Identication of QTLs controlling quantitative characters in rice using RFLP markers[J]. Euphytica, 1996,89:349-354
Andrews D L. Characterization of differentially expressed mRNA sequences in rice (Oryza sativa L.) cv. Lemont and correlation of their expression with total nonstructural carbohydrate content [D]. Texas: Texas A&M University, College Station, 1990