全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
核农学报  2013 

利用双向导入系剖析水稻源、库相关性状的QTL

, PP. 261-271

Keywords: 水稻,单核苷酸多态性标记,库源相关性状,比叶重,遗传背景

Full-Text   Cite this paper   Add to My Lib

Abstract:

以我国高产籼稻特青和美国优质粳稻Lemont为亲本培育的双向回交导入系为材料,采用单核苷酸多态性标记定位源相关性状(剑叶长、剑叶宽、剑叶面积、叶干重和比叶重)和库相关性状(穗总粒数、千粒重和穗实粒重)的QTL。特青剑叶长、穗总粒数和穗实粒重显著大于Lemont,剑叶宽则显著小于Lemont。双向导入系群体检测到影响源、库相关性状的QTL62个,平均每个QTL解释群体表型变异的9.0%,变幅为3.0%~27.9%。Lemont背景导入系在第2、3、4、6、9和11等6个染色体的区段同时定位到影响源、库相关性状QTL17个,占Lemont背景导入系定位QTL总数的50%。特青背景导入系在第1、3、4、8和12等5个染色体区段同时定位到影响源、库相关性状的QTL13个,占特青背景导入系定位QTL总数的28.3%。Lemont背景下绝大多数位点导入特青等位基因均增加性状值,而特青背景绝大多数位点导入Lemont等位基因都减小性状值。两个背景共同检测到影响源、库相关性状的QTL有18个,占定位到62个QTL的29.0%,表明源、库相关性状QTL定位存在明显的遗传背景效应。发现第3染色体影响剑叶长、剑叶面积、叶片干重、每穗总粒数和穗实粒重的35576704~36341768区间和第4染色体影响比叶重、穗总粒数和穗实粒重的4560663~13503095区间,在以往不同群体中均被检测到,是影响水稻源、库相关性状的重要染色体区域,对标记辅助选择培育源、库协调的超高产水稻品种具有重要的应用价值。

References

[1]  袁隆平. 杂交水稻超高产育种[J].杂交水稻,1997,16(6):1-6
[2]  陈温福,徐正进,张龙步. 水稻超高产育种生理基础[M].沈阳:辽宁科学技术出版社,2003,190-192
[3]  程式华,翟虎渠.水稻亚种间超高产杂交组合若干株型因子的比较[J].作物学报, 2000,26(6):713-718
[4]  Ashraf M, Akbar M, Salim M. Genetic improvement in physiological traits of rice yield. In: Slafer GA (ed) Genetic improvement of field crops[J]. Marcel Dekker Incorporates New York, 1994, 413-455
[5]  Lafitte H R, Travis R L. Photosynthesis and assimilate partitioning in closely related lines of rice exhibiting different sink: source relationships[J]. Crop Science, 1984, 24:447-452
[6]  何慈信,朱军,严菊强,Mebrouk B,吴平.水稻叶挺发育动态的QTL分析[J].中国水稻科学,2000,14(4):193-198
[7]  岳 兵,薛为亚,罗利军,刑永忠.水稻剑叶部分形态生理特性QTL分析以及它们与产量、产量性状的关系[J].遗传学报,2006,33(9): 824-832
[8]  Gladun I V, Karpov E A. Distribution of assimilates from the flag leaf of rice during the reproductive period of development[J]. Russian Journal of Plant Physiology,1993,40:215-219
[9]  吕川根,宗寿余,姚克敏,夏士健,胡凝,邹江石.水稻叶片形态因子的遗传力分析[J].江苏农业学报, 2006, 22(2): 95-99
[10]  庄杰云,郑康乐.水稻产量性状遗传机理及分子标记辅助高产育种[J].生物技术通报,1998,1:1-9
[11]  Yue B, Xue W Y, Luo L J, Xing Y Z, QTL analysis for flag leaf characteristics and their relationships with yield and yield traits in rice[J]. Acta Genetica Sinica, 2006, 33:824-832
[12]  Shen Bo, Yu Wei-dong, Du Jing-hong, Fan Ye-yang, Wu Ji-rong, Zhuang Jie-Yun. Validation and dissection of quantitative trait loci for leaf traits in interval RM4923-RM402 on the short arm of rice chromosome 6[J]. Genetics, 2011,90(1): 39-44
[13]  Mei H W, Xu J L, Li Z K, Yu X Q, Guo L B, Wang Y P, Ying C S, Luo L J. QTLs influencing panicle size detected in two reciprocal introgressive line (IL) populations in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2006, 112: 648-656
[14]  Xing Y Z, Tang W J, Xue W Y, Xu C G, Zhang Q F. Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single. Mendelian factor in rice[J]. Theoretical and Applied Genetics, 2008, 116:789-796
[15]  Yuan Guo, Hong De lin. Novel pleiotropic loci controlling panicle architecture across environments in japonicarice (Oryza sativa L.)[J]. Journal of Genetics and Genomics, 2010, 37(8): 533-544
[16]  Ding Xipeng, Li Xiaokai, Xiong Lizhong. Evaluation of near-isogenic lines for drought resistance QTL and fine mapping of a locus affecting flag leaf width, spikelet number, and root volume in rice[J]. Theoretical and Applied Genetics, 2011,123(1):43-50
[17]  Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production[J]. Science, 2005, 309:741-745
[18]  Thomson M J, Tai T H, Mc Clung A M, Lai X H, Hinga M E,Lobos K B, Xu Y, Martinez C P, McCouch S R. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jeverson[J]. Theoretical and Applied Genetics, 2003, 107: 479-493
[19]  Akihiko K, Babu R C, Boopathi N M, Fukai S. Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environment[J]. Field Crops Research, 2008, 109:1-2
[20]  Setter T L, Laureles E V. The beneficial effect of reduced elongation growth on submergence tolerance of rice[J]. Journal of Experimental Botany, 1996, 47(303): 1551-1559
[21]  Sarkar R K, De R N, Reddy J N, Ramakrishnayya G. Studies on the submergence tolerance mechanism in relation to carbohydrate, chlorophyll and specific leaf weight in rice(Oryza sativa L.)[J]. Journal of Plant Physiology, 1996, 149:623-625
[22]  陈温福,徐正进.水稻超高产育种理论与方法[M].北京:科学出版社,2007:94-98
[23]  Zhao X Q, Xu J L, Zhao M, Lafitte R, Zhu L H, Fu B Y, Gao M Y, Li Z K. QTLs affecting morph-physiological traits related to drought tolerance detected in overlapping introgression lines of rice (Oryza sativa L.)[J]. Plant Science, 2008, 174: 618-625
[24]  Xu J L, Lafitte H R, Gao Y M, Fu B Y, Torres R, Li Z K. QTLs for drought escape and tolerance identified in a set of random introgression lines of rice[J]. Theoretical and Applied Genetics, 2005, 111:1642-1650
[25]  叶少平,张启军,李杰勤,赵 兵,殷得所,李 平. 用培矮64S/日本晴F2群体对水稻6个农艺性状的QTL定位[J].中国水稻科学,2007,21(1):39-43
[26]  王智权,刘 喜,江 玲,杨 超,刘世家,陈亮明, 翟虎渠,万建民.利用染色体片段置换系(CSSLs)群体检测水稻剑叶形态性状QTL[J].南京农业大学学报,2010,33(6):1-6
[27]  杨仁崔,杨惠杰.国际水稻研究所新株型稻研究进展[J].杂交水稻,1998,13(5):29-31
[28]  徐正进,陈温福,张文忠.北方梗稻新株型超高产育种研究进展[J].中国农业科学,2004,37(10): 1407-1413
[29]  Cui K H, Peng S B, Xing Y Z, Yu S B, Xu C G, Zhang Q. Molecular dissection of the genetic relationships of source-sink and transport tissue with yield traits in rice[J]. Theoretical and Applied Genetics, 2003, 106:649-658
[30]  Foyer C H. The basis for source-sink interaction in leaves[J]. Plant Physiol Biochemistry, 1987, 25: 649-657
[31]  Gladun I V, Karpov E A. Distribution of assimilates from the flag leaf of rice during the reproductive period of development[J]. Russian Journal of Plant Physiology, 1993, 40: 215-219
[32]  Hirota O, Oka M, Takeda T. Sink activity estimation by sink size and dry matter increase during the ripening stage of barley (Hordeum vu/gare) and rice (Oryza sativa)[J]. Annals of Botany, 1990, 65: 349-354
[33]  Herzog H. Relation of source and sink during the grain-filling period in wheat and some aspects of its regulation[J]. Physiologia Plantarum, 1982, 56:155-160
[34]  Ghosh S, Sahai V N, Saran S. Role of flag leaf on grain yield and spikelet sterility in rice cultivars[J]. Oryza, 1990, 27:87-89
[35]  Hsu P, Walton P D. Relationships between yield and its components and structures above the flag leaf node in spring wheat[J]. Crop Science, 1971, 11:190-193
[36]  王一平,曾建平,郭龙彪,邢永忠,徐才国,梅捍卫,应存山,罗利军.水稻顶部三叶与穗重的关系及其QTL分析[J]. 中国水稻科学,2004,19(1):13-20
[37]  晏月明,王绪信.籼粳稻杂交的剑叶形态的遗传研究[J].遗传, 1990, 12(1): 1-4
[38]  Li Z K, Luo L J, Mei H W, Wang D L, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H, Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. Ⅰ. Biomass and grain yield[J]. Genetics, 2001, 158:1737-1753
[39]  Fan C, Xing Y, Mao H, Lu T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theoretical and Applied Genetics, 2006, 112(6): 1164-1171
[40]  Wang P, Zhou G L, Cui K H, Li Z K, Yu S B. Clustered QTL for source leaf size and yield traits in rice (Oryza sativa L.)[J]. Molecular Breeding, 2012, 29: 99-113
[41]  Xu J L, Yu S B, Luo L J, Zhong D B, Mei H W, Li Z K. Molecular dissection of the primary sink size and its related traits in rice[J]. Plant Breeding, 2004, 123(1):43-50
[42]  Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics, 2007, 39:623-630
[43]  Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae,H, Konishi S, Yano, M. Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nature Genetics, 2008, 40:1023-1028
[44]  Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L, Zhai H Q, Wan J M, Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Research, 2008,18:1199-1209
[45]  Xue Weiya, Xing Yongzhong, Weng Xiaoyu, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J]. Nature Genetics, 2008, 40:761-767
[46]  Yan W H, Wang P, Chen H X, Zhou H J, Li Q P, Wang C R, Ding Z H, Zhang Y S, Yu S B, Xing Y Z, Zhang Q. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice[J]. Molecular Plant, 2011, 4:319-330
[47]  朱根海,张荣铣.叶片含氮量与光合作用[J].植物生理学通讯,1985,(2):9-12
[48]  姜树坤,张喜娟,黄 成,邢亚南,郑 旭,徐正进,陈温福. 基于粳稻F2和 F2:6群体的连锁图谱及剑叶性状QTL比较分析[J].中国水稻科学, 2010,24(4):372-378
[49]  Chen H, He H, Zou Y, Chen W, Yu R, Liu X, Yang Y, Gao Y M, Xu J L, Fan L M, Li Y, Li Z K, Deng X W. Development and application of a set of breeder-friendly SNP markers for genetic analyses and molecular breeding of rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2011, 123(6):869-79
[50]  SAS Institute. SAS/STAT User’s Guide[R]. Cary NC, USA: SAS Institute, 1996:25-36
[51]  International Rice Genome Sequencing Project. The map-based sequence of the rice genome[J]. Nature, 2005,436:793-800
[52]  谢学文,许美容,藏金萍,孙 勇,朱苓华,徐建龙,周永力,黎志康. 水稻抗纹枯病QTL表达的遗传背景及环境效应[J].作物学报,2008,34(11):1885-1893
[53]  王 韵,程立锐,孙 勇,周 政,朱苓华,徐正进,徐建龙,黎志康.利用双向导入系解析水稻抽穗期和株高QTL及其与环境互作表达的遗传背景效应[J].作物学报,2009,35(8):1386-1394
[54]  杨 静,孙 勇,程立锐,周 政,王 韵,朱苓华,苍 晶,徐建龙,黎志康.利用双向导入系检测遗传背景对耐盐QTL定位的影响[J].作物学报,2009,35(6):974-982
[55]  Cheng Lirui, Wang Yun, Meng Lijun, Hu Xia, Cui Yanru, Sun Yong, Zhu Linghua, Ali Jauhar, Xu Jianlong, Li Zhikang. Identification of salt-tolerant QTLs with strong genetic background effect using two sets of reciprocal introgression lines in rice[J].Genome,2012,55(1):45-55
[56]  Lin H X, Qian H R, Zhuang J Y, Lu J, Min S K, Xiong Z M, Huang N, Zheng K L. RFLP mapping of QTLs for yield and related characters in rice(Oryza sativa L)[J]. Theoretical and Applied Genetics, 1996, 92:920-927
[57]  Wu P, Zhang G and Huang N. Identication of QTLs controlling quantitative characters in rice using RFLP markers[J]. Euphytica, 1996,89:349-354
[58]  黄耀祥,林青山.水稻超高产、特优质株型模式的构想与育种实践[J].广东农业科学,1994,(4):1-6
[59]  Andrews D L. Characterization of differentially expressed mRNA sequences in rice (Oryza sativa L.) cv. Lemont and correlation of their expression with total nonstructural carbohydrate content [D]. Texas: Texas A&M University, College Station, 1990

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133