Zhao K, Tung C W, Eizenga G C, Wright M H, Ali M L, Price A H, Norton G J, Islam M R, Reynolds A, Mezey J, Mcclung A M, Bustamante C D, Mccouch S R. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa[J]. Nature Communications, 2011, 2:467-477
[2]
Tian Z, Qian Q, Liu Q, Yan M, Liu X, Yan C, Liu G, Gao Z, Tang S, Zeng D, Wang Y, Yu J, Gu M, Li J. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities[J]. Proceedings of the National Academy of Sciences, 2009, 106(51): 21760-21765
[3]
Wang Z Y, Zheng F Q, Shen G Z, Gao J P, Snustad D P, Li M G, Zhang J L, Hong M M. The amylose content in rice endosperm is related to the post-transcriptional regulation of the Waxy gene[J]. The Plant Journal, 1995, 7(4): 613-622
[4]
Gao Z, Zeng D, Cui X, Zhou Y, Yan M, Huang D, Li J, Qian Q. Map-based cloning of the ALK gene, which controls the gelatinization temperature of rice[J]. Science in China Series C: Life Sciences, 2003, 46(6): 661-668
[5]
Sweeney M T, Thomson M J, Pfeil B E, Mccouch S. Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice[J]. The Plant Cell Online, 2006, 18(2): 283-294
[6]
Saitoh K, Onishi K, Mikami I, Thidar K, Sano Y. Allelic diversification at the C (OsC1) locus of wild and cultivated rice[J]. Genetics, 2004, 168(2): 997-1007
[7]
Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theoretical and Applied Genetics, 2006, 112(6): 1164-1171
[8]
Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler E S, Qian Q, Zhang Q-F, Li J, Han B. Genome-wide association studies of 14 agronomic traits in rice landraces[J]. Nature Genetics, 2010, 42(11): 961-967
[9]
McCouch S R, Zhao K, Wright M, Tung C-W, Ebana K, Thomson M, Reynolds A, Wang D, Declerck G, Ali M L, Mcclung A, Eizenga G, Bustamante C. Development of genome-wide SNP assays for rice[J]. Breeding Science, 2010, 60(5): 524-535
[10]
Tung C W, Zhao K, Wright M H, Ali M L, Jung J, Kimball J, Tyagi W, Thomson M J, Mcnally K, Leung H, Kim H, Ahn S-N, Reynolds A, Scheffler B, Eizenga G, Mcclung A, Bustamante C, Mccouch S R. Development of a Research Platform for Dissecting Phenotype-Genotype Associations in Rice (Oryza spp.)[J]. Rice, 2010, 3(4): 205-217
[11]
Tian F, Bradbury P J, Brown P J, Hung H, Sun Q, Flint-Garcia S, Rocheford T R, Mcmullen M D, Holland J B, Buckler E S. Genome-wide association study of leaf architecture in the maize nested association mapping population[J]. Nature Genetics, 2011, 43(2): 159-162
[12]
Kump K L, Bradbury P J, Wisser R J, Buckler E S, Belcher A R, Oropeza-Rosas M A, Zwonitzer J C, Kresovich S, Mcmullen M D, Ware D, Balint-Kurti P J, Holland J B. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population[J]. Nature Genetics, 2011, 43(2): 163-168
[13]
Flint-Garcia S A, Thornsberry J M, Iv B. Structure of Linkage Disequilibrium in Plants[J]. Annual Review of Plant Biology, 2003, 54(1): 357-374
[14]
Flint-Garcia S A, Thuillet A C, Yu J, Pressoir G, Romero S M, Mitchell S E, Doebley J, Kresovich S, Goodman M M, Buckler E S. Maize association population: a high-resolution platform for quantitative trait locus dissection[J]. The Plant Journal, 2005, 44(6): 1054-1064
[15]
Gore M, Buckler E S, Yu J, Zhu C. Status and prospects of association mapping in plants[J]. The Plant Genome, 2008, 1(1): 5-20
[16]
Bao J S, Corke H, Sun M. Nucleotide diversity in starch synthase IIa and validation of single nucleotide polymorphisms in relation to starch gelatinization temperature and other physicochemical properties in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2006, 113(7): 1171-1183
[17]
Bryan G T, Wu K S, Farrall L, Jia Y, Hershey H P, Mcadams S A, Faulk K N, Donaldson G K, Tarchini R, Valent B. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta[J]. The Plant Cell Online, 2000, 12(11): 2033-2046
[18]
Ammiraju J S S, Luo M, Goicoechea J L, Wang W, Kudrna D, Mueller C, Talag J, Kim H R, Sisneros N B, Blackmon B. The Oryza bacterial artificial chromosome library resource: construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza[J]. Genome Research, 2006, 16(1): 140-147
[19]
McNally K L, Childs K L, Bohnert R, Davidson R M, Zhao K, Ulat V J, Zeller G, Clark R M, Hoen D R, Bureau T E, Stokowski R, Ballinger D G, Frazer K A, Cox D R, Padhukasahasram B, Bustamante C D, Weigel D, Mackill D J, Bruskiewich R M, Ratsch G, Buell C R, Leung H, Leach J E. Genomewide SNP variation reveals relationships among landraces and modern varieties of rice[J]. Proceedings of the National Academy of Sciences, 2009, 106(30): 12273-12278
[20]
Sato H, Endo T, Shiokai S, Nishio T, Yamaguchi M. Identification of 205 current rice cultivars in Japan by dot-blot-SNP analysis[J]. Breeding Science, 2010, 60(4): 447-453
[21]
Zhao K, Wright M, Kimball J, Eizenga G, Mcclung A, Kovach M, Tyagi W, Ali M L, Tung C W, Reynolds A. Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome[J]. PLoS ONE, 2010, 5(5): e10780
[22]
Ebana K, Yonemaru J I, Fukuoka S, Iwata H, Kanamori H, Namiki N, Nagasaki H, Yano M. Genetic structure revealed by a whole-genome single-nucleotide polymorphism survey of diverse accessions of cultivated Asian rice (Oryza sativa L.)[J]. Breeding Science, 2010, 60(4): 390-397
[23]
Ebana K, Kojima Y, Fukuoka S, Nagamine T, Kawase M. Development of mini core collection of Japanese rice landrace[J]. Breeding Science, 2008, 58(3): 281-291
[24]
Kojima Y, Ebana K, Fukuoka S, Nagamine T, Kawase M. Development of an RFLP-based rice diversity research set of germplasm[J]. Breeding Science, 2005, 55(4): 431-440
[25]
Chen H, He H, Zou Y, Chen W, Yu R, Liu X, Yang Y, Gao Y-M, Xu J-L, Fan L-M, Li Y, Li Z-K, Deng X W. Development and application of a set of breeder-friendly SNP markers for genetic analyses and molecular breeding of rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2011, 123(6): 869-879
[26]
Garris A J, Tai T H, Coburn J, Kresovich S, Mccouch S. Genetic structure and diversity in Oryza sativa L[J]. Genetics, 2005, 169(3): 1631-1638
[27]
Myles S, Peiffer J, Brown P J, Ersoz E S, Zhang Z, Costich D E, Buckler E S. Association mapping: critical considerations shift from genotyping to experimental design[J]. The Plant Cell Online, 2009, 21(8): 2194-2202
[28]
Ordonez Jr S A, Silva J, Oard J H. Association mapping of grain quality and flowering time in elite japonica rice germplasm[J]. Journal of Cereal Science, 2010, 51(3): 337-343
Pritchard J K, Stephens M, Rosenberg N A, Donnelly P. Association mapping in structured populations[J]. The American Journal of Human Genetics, 2000, 67(1): 170-181
[31]
Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nature Genetics, 2008, 40(8): 1023-1028
[32]
Aranzana M J, Kim S, Zhao K, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang C. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes[J]. PLoS Genetics, 2005, 1(5): e60
[33]
Ehrenreich I M, Stafford P A, Purugganan M D. The genetic architecture of shoot branching in Arabidopsis thaliana: a comparative assessment of candidate gene associations vs. quantitative trait locus mapping[J]. Genetics, 2007, 176(2): 1223-1236
Thomson M J, Zhao K, Wright M, Mcnally K L, Rey J, Tung C W, Reynolds A, Scheffler B, Eizenga G, Mcclung A. High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platform[J]. Molecular Breeding, 2011:1-12
[36]
Yamamoto T, Nagasaki H, Yonemaru J-I, Ebana K, Nakajima M, Shibaya T, Yano M. Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms[J]. BMC Genomics, 2010, 11(1): 267
[37]
Metzker M L. Emerging technologies in DNA sequencing[J]. Genome Research, 2005, 15(12): 1767-1776
[38]
Schuster S C. Next-generation sequencing transforms today's biology[J]. Nature Methods, 2008, 26:1135-1145
[39]
Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B. Real-time DNA sequencing from single polymerase molecules[J]. Science, 2009, 323(5910): 133-138
[40]
McNally K L, Bruskiewich R, Mackill D, Buell C R, Leach J E, Leung H. Sequencing multiple and diverse rice varieties. Connecting whole-genome variation with phenotypes[J]. Plant Physiology, 2006, 141(1): 26-31
[41]
Jin L, Lu Y, Xiao P, Sun M, Corke H, Bao J. Genetic diversity and population structure of a diverse set of rice germplasm for association mapping[J]. Theoretical and Applied Genetics, 2010, 121(3): 475-487
[42]
Yu J, Buckler E S. Genetic association mapping and genome organization of maize[J]. Current Opinion in Biotechnology, 2006, 17(2): 155-160
[43]
Price A L, Patterson N J, Plenge R M, Weinblatt M E, Shadick N A, Reich D. Principal components analysis corrects for stratification in genome-wide association studies[J]. Nature Genetics, 2006, 38(8): 904-909
[44]
Beló A, Zheng P, Luck S, Shen B, Meyer D J, Li B, Tingey S, Rafalski A. Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize[J]. Molecular Genetics and Genomics, 2008, 279(1): 1-10
[45]
Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, Li W, Guo Y, Deng L, Zhu C, Fan D, Lu Y, Weng Q, Liu K, Zhou T, Jing Y, Si L, Dong G, Huang T, Lu T, Feng Q, Qian Q, Li J, Han B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm[J]. Nature Genetics, 2011, 44(1): 32-39
McMullen M D, Kresovich S, Villeda H S, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell S E, Peterson B, Pressoir G, Romero S, Rosas M O, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz J C, Goodman M, Ware D, Holland J B, Buckler E S. Genetic Properties of the Maize Nested Association Mapping Population[J]. Science, 2009, 325(5941): 737-740
[48]
Cavanagh C, Morell M, Mackay I, Powell W. From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants[J]. Current Opinion in Plant Biology, 2008, 11(2): 215-221
[49]
Nuzhdin S V, Friesen M L, Mcintyre L M. Genotype-phenotype mapping in a post-GWAS world[J]. Trends in Genetics, 2012, 28 (9): 421-426