Kunst L, Samuels A L.Biosynthesis and secretion of plant cuticular wax[J]. Progress in Lipid Research, 2003, 42: 51-80
[2]
Riederer M, Schreiber L.Protecting against water loss: analysis of the barrier properties of plant cuticles[J]. Journal of Experimental Botany, 2001, 52:2023-2032
[3]
Kolattukudy P E.Biosynthetic pathways of cutin and waxes and their sensitivity to environmental stresses[M]. //Plant Cuticles: An Integrated Functional Approach. Edited by Kerstiens G. Oxford, UK: Bios Scientific Publishers, 1996:83-108
[4]
Krauss P, Markstadter C, Riederer M.Attenuation of UV radiation by plant cuticles from woody species[J]. Plant, Cell & Environment, 1997,20:1079-1085
[5]
Jenks M A, Joly R J, Peters P J, Rich P J, Axtell J D, Ashworth E N.Chemically Induced Cuticle Mutation Affecting Epidermal Conductance to Water Vapor and Disease Susceptibility in Sorghum bicolor (L.) Moench[J]. Plant Physiology, 1994, 105:1239-1245
[6]
Zhang J Y, Broeckling C D, Blancaflor E B, Sledge M K, Sumner L W, Wang Z Y. Over-expression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa)[J]. The Plant Journal, 2005, 42:689-707
[7]
Zhang J Y, Broeckling C D, Sumner L W, Wang Z Y. Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance[J]. Plant Molecular Biology, 2007, 64:265-278
[8]
Weng H, Molina I, Shockey J, Browse J. Organ fusion and defective cuticle function in a lacs1 lacs2 double mutant of Arabidopsis[J]. Planta, 2010, 231: 1089-1100
[9]
Kosma D K, Bourdenx B, Bernard A, Parsons E P, Lü S Y. The impact of water deciency on leaf cuticle lipids of Arabidopsis[J]. Plant Physiology, 2009,151: 1918-1930
[10]
Bourdenx B, Bernard A, Domergue F, Pascal S, Leger A, Roby D, Pervent M, Vile D, Haslam R P, Napier J A, Lessire R, Joubes J. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses[J]. Plant Physiology, 2011, 156:29-45
[11]
Islam M A, Du H, Ning J, Ye H Y, Xiong L Z. Characterization of Glossy1-homologous genes in rice involved in leaf wax accumulation and drought resistance[J]. Plant Molecular Biology, 2009, 70:443-456
[12]
Qin B X, Tang D, Huang J, Li M, Wu X R, Lu L L, Wang K J, Yu H X, Chen J M, Gu M H, Cheng Z K. Rice OsGL1-1 is involved in leaf cuticular wax and cuticle membrane[J]. Molecular Plant, 2011, 72:985-995
[13]
Mao B G, Cheng Z J, Lei C L, Xu F H, Gao S W, Ren Y L, Wang J L, Zhang X, Wang J, Wu F Q, Guo X P, Liu X L, Wu C Y, Wang H Y, Wan J M. Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax[J]. Planta, 2011,235:39-52
[14]
Jung K H, Han M J, Lee D Y, Lee Y S, Schreiber L, Franke R, Faust A, Yephremov A, Saedler H, Kim Y W. Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development[J]. Plant Cell, 2006, 18:3015-3032
Li J, Jiang D G, Zhou H, Li F, Yang J W, Hong L F, Fu X A, Li Z B, Liu Z L, Li J M, Zhuang C X. Expression of RNA-interference/antisense transgenes by the cognate promoters of target genes is a better gene-silencing strategy to study gene functions in rice[J]. PLoS ONE, 2011, 6:e17444
Jiang D G, Li J, Wu P, Liu ZL, Zhuang C X. Isolation and characterization of a microsporocyte-specificgene, OsMSP, in rice[J]. Plant Molecular Biology Reporter, 2009, 27:469-475
[19]
Lin T, Sharma P, Gonzalez D H, Viola L L, Hannapel D J. The impact of the long-distance transport of a BEL1-like mRNA on development[J]. Plant Physiology, 2012, DOI:10.1104/pp.112.209429
[20]
Li C Y, Gu M, Shi N N, Zhang H, Yang X, Osman T, Liu Y L, Wan H Z, Vatish M, Jackson S,HongY G. Mobile FT mRNA contributes to the systemic florigen signalling in floral induction[J]. Scientific Reports, 2011, DOI:10.1038/srep00073
[21]
Hannapel D J. A model system of development regulated by the long-distance transport of mRNA[J]. Journal of Integrative Plant Biology, 2010, 52:40-52
[22]
Banerjee A K, Lin T, Hannapel D J. Untranslated regions of a mobile transcript mediate RNA metabolism[J]. Plant Physiology, 2009, 151:1831-1843
[23]
van Maarseveen C, Han H, Jetter R. Development of the cuticular wax during growth of Kalanchoe daigremontiana (Hamet et Perr. de la Bathie) leaves[J]. Plant, Cell & Environment, 2009, 32:73-81
[24]
Jenks M A, Eigenbrode S D, Lemieux B. Cuticular waxes of Arabidopsis. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book[M]. Rockville, MD:American Society of Plant Biologists. 2002
[25]
Sanchez F J, Manzanares M, Andres E F, Tenorio J L, Ayerbe L. Residual transpiration rate, epicuticular wax load and leaf colour of pea plants in drought conditions: influence on harvest index and canopy temperature[J]. European Journal of Agronomy, 2001, 15:57-70
[26]
Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress[J]. Plant Cell, 2002, 14(s): 165-183
[27]
Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism[J]. Annual Review of Plant Biology, 2005,56:165-185
Prasad T K, Anderson M P, Martin B A. Evidence for chilling induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide[J]. Plant Cell, 1994, 6:65-74
Gattuso M, Bonomi M, Tateo F, Morandini P, Sturaro M. Stress induced modulation of wax biosynthesis in maize and Arabidopsis[J]. Proceedings of the 51st Italian Society of Agricultural Genetics Annual Congress. Poster Abstract-C.02. Riva del Garda, Italy.2007