全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
核农学报  2013 

一个玉米Pht1家族磷转运蛋白基因克隆和功能分析

DOI: 10.11869/hnxb.2013.07.0885, PP. 885-894

Keywords: 玉米,磷转运蛋白,进化树,基因表达,亚细胞定位

Full-Text   Cite this paper   Add to My Lib

Abstract:

从耐低磷玉米自交系178中分离和鉴定高亲和力磷转运蛋白质基因,为开展磷高效分子育种奠定理论基础。本研究以水稻和拟南芥中鉴定的磷转运蛋白基因为基础,运用生物信息学方法,对玉米进行全基因组预测及系统进化分析;并运用克隆、实时荧光定量PCR和亚细胞定位方法对其家族成员进行深入研究。结果表明,从玉米自交系B73全基因组序列中筛选出37个磷转运蛋白候选基因,并被聚类为五大家族。从耐低磷材料中扩增了一个属于Pht1家族成员ZmPht1;9的全长cDNA,该基因编码区长1620bp,编码539个氨基酸,含有典型的MFS超家族蛋白的保守结构域和12个跨膜结构;荧光定量PCR分析表明,在低磷胁迫下,该基因的相对表达量显著增加,且叶片中的表达量高于根系,同时在基因型之间也存在差异;原生质体转化的亚细胞定位结果显示,ZmPht1;9表达蛋白主要分布于细胞膜上。ZmPht1;9编码位于细胞膜上的高亲和力磷转运蛋白,对调节磷素的动态平衡起重要作用。

References

[1]  Rausch C, Bucher M. Molecular mechanisms of phosphate transport in plants[J]. Planta, 2002, 216(1): 23-37
[2]  Lynch J. Root architecture and plant productivity[J]. Plant Physiology, 1995, 109: 7-13
[3]  孙海国, 张福锁, 杨军芳. 不同供磷水平小麦苗期根系特征与其相对产量的关系[J]. 华北农学报, 2001, 16(3): 98-104
[4]  Raghothama K G. Phosphate acquisition [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50(1): 665-693
[5]  Fang Z Y,Shao C, Meng Y J, Wu P, Cheng M. Phosphate signaling in Arabidopsis and Oryza sativa[J]. Plant Science, 2009, 176(2): 170-180
[6]  Muchhal U S, Pardo J M, Raghothama K G. Phosphate transporters from the higher plant Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences, 1996, 93(19): 10519-10523
[7]  Mudge S R, Rae A L, Diatloff E, Smith F W. Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis[J]. The Plant Journal, 2002, 31(3): 341-353
[8]  Poirier Y, Bucher M. Phosphate transport and homeostasis in Arabidopsis[J]. The Arabidopsis Book, 2002, 1: e0024
[9]  Daram P, Brunner S, Rausch C, Steiner C, Amrhein N, Bucher M. Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis[J]. The Plant Cell, 1999, 11(11): 2153-2166
[10]  Myoung R P, So-Hyeon B, Benildo R, Song Y. Overexpression of a high-affinity phosphate transporter gene from tobacco (NtPT1) enhances phosphate uptake and accumulation in transgenic rice plants[J]. Plant and Soil, 2007, 292(1): 259-269
[11]  Rae A L, Cybinski D H, Jarmey J M, Smith F W. Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family[J]. Plant molecular biology, 2003, 53(1): 27-36
[12]  Rae A L, Jarmey J M, Mudge S R, Smith F W. Over-expression of a high-affinity phosphate transporter in transgenic barley plants does not enhance phosphate uptake rates[J]. Functional Plant Biology, 2004, 31(2): 141-148
[13]  Takabatake R, Hata S, Taniguchi M, Kouchi H, Sugiyama T, Izui K. Isolation and characterization of cDNAs encoding mitochondrial phosphate transporters in soybean, maize, rice, and Arabidopsis[J]. Plant molecular biology, 1999, 40(3): 479-486
[14]  Hamburger D, Rezzonico E, MacDonald-Comber Petétot J, Somerville C, Poirier Y. Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem[J]. The Plant Cell Online, 2002, 14(4): 889-902
[15]  Paszkowski U, Kroken S, Roux C, Briggs S P. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis[J]. Proceedings of the National Academy of Sciences, 2002, 99(20): 13324-13329
[16]  Ming F, Lu Q, Wang W, Zhang S, Guo B, Shen D. Cloning, expression and function of phosphate transporter encoded gene in Oryza sativa L.[J]. Science in China Series C: Life Sciences, 2006, 49(5): 409-413
[17]  Hu B, Zhu C, Li F, Tang J, Wang Y, Lin A, Liu L, Che R, Chu C. LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice[J]. Plant Physiology, 2011, 156(3): 1101-1115
[18]  Secco D, Baumann A, Poirier Y. Characterization of the Rice PHO1 Gene Family Reveals a Key Role for OsPHO1;2 in Phosphate Homeostasis and the Evolution of a Distinct Clade in Dicotyledons[J]. Plant Physiology, 2010, 152(3): 1693-1704
[19]  Nagy R, Vasconcelos M J, Zhao S, McElver J, Bruce W, Amrhein N, Raghothama KG, Bucher M. Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.) [J]. Plant Biology, 2006, 8(2): 186-197
[20]  Alexandrov N N, Brover V V, Freidin S, Troukhan M E, Tatarinova T V, Zhang H, Swaller T J, Lu Y P, Bouck J, Flavell R B, Feldmann K A. Insights into corn genes derived from large-scale cDNA sequencing[J]. Plant molecular biology, 2009, 69(1): 179-194
[21]  Paterson A H, Bowers J E, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti A K, Chapman J, Feltus F A, Gowik U, Grigoriev I V, Lyons E, Maher C A, Martis M, Narechania A, Otillar R P, Penning B W, Salamov A A, Wang Y, Zhang L, Carpita N C, Freeling M, Gingle A R, Hash C T, Keller B, Klein P, Kresovich S, McCann M C, Ming R, Peterson D G, Mehboob-ur-Rahman, Ware D, Westhoff P, Mayer K F, Messing J, Rokhsar D S. The Sorghum bicolor genome and the diversification of grasses[J]. Nature, 2009, 457(7229): 551-556
[22]  Wang Y, Secco D, Poirier Y. Characterization of the PHO1 gene family and the responses to phosphate deficiency of Physcomitrella patens[J]. Plant Physiology, 2008, 146(2): 646-656
[23]  高妍, 姜佰文, 刘大森, 王春宏, 张迪, 刘学生. 不同种植年限黑土型蔬菜保护地磷素状况的研究[J]. 核农学报, 2011, 25(1): 121-126
[24]  侯彦楠, 杨俊诚, 姜慧敏, 张建峰, 吴庆钰, 李娟. 低磷胁迫下不同基因型玉米籽粒磷含量及品质性状分析[J]. 核农学报, 2009, 23 (2): 327-333
[25]  张吉海, 高世斌, 杨克诚, 张志明, 林海建, 黄宁, 郑溟, 徐克成, 陈义轩, 潘光堂. 玉米耐低磷种质资源的筛选与鉴定[J]. 植物遗传资源学报, 2008, 9(3): 335-339
[26]  Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic acids research, 1997, 25(24): 4876-4882
[27]  Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0[J]. Molecular biology and evolution, 2007, 24(8): 1596-1599
[28]  Schultz J, Milpetz F, Bork P, Ponting C P. SMART, a simple modular architecture research tool: identification of signaling domains[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(11): 5857-5864
[29]  Yu C S, Chen YC, Lu C H, Hwang J K. Prediction of protein subcellular localization[J]. Proteins: Structure, Function, and Bioinformatics, 2006, 64(3): 643-651
[30]  Pfaffl M W, Horgan G W, Dempfle L. Relative expression software tool (REST ?瘙 嚍) for group-wise comparison and statistical analysis of relative expression results in real-time PCR[J]. Nucleic acids research, 2002, 30(9): e36
[31]  Raghothama K G. Phosphate transport and signaling[J]. Current Opinion in Plant Biology, 2000, 3(3): 182-187
[32]  Rausch C, Zimmermann P, Amrhein N, Bucher M. Expression analysis suggests novel roles for the plastidic phosphate transporter Pht2;1 in auto‐and heterotrophic tissues in potato and Arabidopsis[J]. The Plant Journal, 2004, 39(1): 13-28
[33]  Wohlrab H, Briggs C. Yeast mitochondrial phosphate transport protein expressed in Escherichia coli. Site-directed mutations at threonine-43 and at a similar location in the second tandem repeat (isoleucine-141) [J]. Biochemistry, 1994, 33(32): 9371-9375
[34]  Stappen R, Kr?mer R. Kinetic mechanism of phosphate/phosphate and phosphate/OH- antiports catalyzed by reconstituted phosphate carrier from beef heart mitochondria[J]. The Journal of Biological Chemistry, 1994, 269(15): 11240-11246
[35]  Karandashov V, Bucher M. Symbiotic phosphate transport in arbuscular mycorrhizas[J]. Trends in plant science, 2005, 10(1): 22-29
[36]  Pinson B, Merle M, Franconi J M, Daignan-Fornier B. Low Affinity Orthophosphate Carriers Regulate PHO Gene Expression Independently of Internal Orthophosphate Concentration in Saccharomyces cerevisiae[J]. Journal of Biological Chemistry, 2004, 279(34): 35273-35280
[37]  Hammond J P, Bennett M J, Bowen H C, Broadley M R, Eastwood D C, May S T, Rahn C, Swarup R, Woolaway K E, White P J. Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants[J]. Plant Physiology, 2003, 132(2): 578-596
[38]  Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller AJ, Xu G. Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation[J]. The Plant Journal, 2009, 57(5): 798-809

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133