全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
核农学报  2013 

甜菜幼苗生长及叶片光化学活性对氮素的响应特征

DOI: 10.11869/hnxb.2013.09.1391, PP. 1391-1400

Keywords: 甜菜,氮素,光合色素,气体交换,RuBP羧化酶,叶绿素荧光

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用盆栽试验,以甜菜(BetavulgarisL.)品种双丰16和甜研7为试材,研究了不同水平氮素处理对甜菜苗期植株生长、叶片光合色素含量、RuBP羧化酶活力、气体交换和叶绿素荧光参数的影响。结果表明,不同甜菜品种植株叶面积、各部位生物量、全氮和可溶性蛋白含量、RuBP羧化酶活力以及气体交换参数均随施氮量的增加呈先升高后降低的趋势;氮素对苗期甜菜地上部生长的促进作用大于地下部,氮素供给后根冠比、叶片比叶重显著降低;此外,甜菜叶片光合色素含量、PSII最大光化学量子产量(Fv/Fm)、开放的PSII原初光能捕获效率(F'v/F'm)以及PSII实际光化学效率(Y(II))均随施氮量的增加而上升,调节性非光化学淬灭系数(Y(NPQ))随施氮量的增加而下降。同时,调节性非光化学淬灭(NPQ)和快速暗弛豫(NPQF)均显著受氮素的影响(P<0.05)。本试验条件下,适量施氮(60~180kg·hm-2)可通过提高光合色素含量、PSII潜在活性及PSII光化学最大效率,减少荧光非化学淬灭系数,避免光抑制的产生等改善光化学活性的途径,以及增强叶片的气孔导度和羧化能力,进而有助于提高甜菜植株的光合特性,促进其生长和产质量的形成。过多施氮对甜菜幼苗光合与生长的促进效应降低。

References

[1]  Grassi G, Meir P, Cromer R, Tompkins D, Jarvis P G. Photosynthetic parameters in seedlings of Eucalyptus grandis as affected by rate of nitrogen supply[J]. Plant Cell and Environment, 2002, 25(12): 1677-1688
[2]  Cechin I, de Fátima Fumis T. Effect of nitrogen supply on growth and photosynthesis of sunflower plants grown in the greenhouse[J]. Plant Science, 2004, 166(5): 1379-1385
[3]  吴长艾, 孟庆伟, 邹琦. 叶黄素循环及其调控[J]. 植物生理学通讯, 2001, 37(1): 1-5
[4]  O'shea C J, Lynch B, Lynch M B, Callan J J, O'Doherty J V. Ammonia emissions and dry matter of separated pig manure fractions as affected by crude protein concentration and sugar beet pulp inclusion of finishing pig diets[J]. Agriculture Ecosystems and Environment, 2009, 131(3-4): 154-160
[5]  于海彬, 蔡葆. 不同氮素水平甜菜生长量与产质量关系初探[J]. 中国甜菜, 1992, (2): 14-19
[6]  Zhao D L, Reddy K R, Kakani V G, Read J J, Carter G A. Corn (Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply[J]. Plant and Soil, 2003, 257(1): 205-218
[7]  Nevins D J, Loomis R S. Nitrogen nutrition and photosynthesis in sugar beet (Beta vulgaris L.)[J]. Crop Science, 1970, 10(1): 21-25
[8]  曲文章, 蔡伯岩, 高妙真, 吴纯祥. 氮素水平对甜菜产量形成作用机理的研究之二 氮素水平对甜菜光合效率的影响[J]. 中国甜菜糖业, 1999, (4): 1-4
[9]  越鹏, 李彩凤, 陈业婷, 赵丽影, 王园园, 滕祥勇, 王南博. 氮素水平对甜菜功能叶片光合特性的影响[J]. 核农学报, 2010, 24(5): 1080-1085
[10]  杜永成, 王玉波, 范文婷, 盖志佳, 于敦爽, 谷维, 张俐俐, 马凤鸣. 氮磷钾对甜菜硝酸还原酶与亚硝酸还原酶的影响[J]. 植物营养与肥料学报, 2012, 18(3): 717-723
[11]  Cabrera-Bosquet L, Albrizio R, Araus J L, Nogués S. Photosynthetic capacity of field-grown durum wheat under different N availabilities: a comparative study from leaf to canopy[J]. Environmental and Experimental Botany, 2009, 67(1): 145-152
[12]  Kumagai E, Araki T, Ueno O. Comparison of susceptibility to photoinhibition and energy partitioning of absorbed light in photosystem II in flag leaves of two rice (Oryza sativa L.) cultivars that differ in their responses to nitrogen-deficiency[J]. Plant Production Science, 2010, 13(1): 11-20
[13]  Verhoeven A S, Demmig-Adams B, Adams III W W. Enhanced employment of the xanthophyll cycle and thermal energy dissipation in spinach exposed to high light and N stress[J]. Plant Physiology, 1997, 113(3): 817-824
[14]  Kato M C, Hikosaka K, Hirotsu N, Makino A, Hirose T. The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivation in photosystem II[J]. Plant and Cell Physiology, 2003, 44(3): 318-325
[15]  McMurtrey III J E, Chappelle E W, Kim M S, Meisinger J J, Corp L A. Distinguishing nitrogen fertilization levels in field corn (Zea mays L.) with actively induced fluorescence and passive reflectance measurements[J]. Remote Sensing of Environment, 1994, 47(1): 36-44
[16]  Hendrickson L, Furbank R T, Chow W S. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence[J]. Photosynthesis Research, 2004, 82(1): 73-81
[17]  Lichtenthaler H K. Chlorophylls and carotenoids-pigments of photosynthetic biomembranes[M]//Colowick S P, et al. (eds). Methods in Enzymology. San Diego, Academic press, 1987.
[18]  李立人, 王维光, 韩祺. 苜蓿二磷酸核酮糖(RuBP)羧化酶体内活化作用的调节[J]. 植物生理学报, 1986, 12(1): 33-39.
[19]  Racker E. Ribulose diphosphate carboxylase from spinach leaves[M]//In: Colowich S P, Kaplan N O (eds). Methods in Enzymology. New York: Academic press, 1962: 266-278.
[20]  李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2006, 134-192
[21]  冯玉龙, 曹坤芳, 冯志立. 生长光强对4种热带雨林树苗光合机构的影响[J]. 植物生理与分子生物学学报, 2002, 28(2): 153-160
[22]  张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报, 1999, 16(4): 444-448
[23]  鞠正春, 于振文. 追施氮肥时期对冬小麦旗叶叶绿素荧光特性的影响[J]. 应用生态学报, 2006, 17(3): 395-398
[24]  郭卫东, 桑 丹, 郑建树, 廖海兵, 陈文荣. 缺氮对佛手气体交换、叶绿素荧光及叶绿体超微结构的影响[J]. 浙江大学学报, 2009, 35(3): 307-314
[25]  冯伟, 李晓, 王永华, 王晨阳, 郭天财. 小麦叶绿素荧光参数叶位差异及其与植株氮含量的关系[J]. 作物学报, 2012, 38(4): 657-664
[26]  Cimopi S, Gentili E, Guidi L, Soldatini G F. The effect of nitrogen deficiency on leaf gas exchange and chlorophyll fluorescence parameters in sunflower[J]. Plant Science, 1996, 118(2): 177-184
[27]  张雷明, 上官周平, 毛明策, 于贵端. 长期施氮对旱地小麦灌浆期叶绿素荧光参数的影响[J]. 应用生态学报, 2003, 14(5): 695-698
[28]  郭天财, 宋 晓, 马冬云, 王永华, 谢迎新, 查菲娜, 岳艳军, 岳彩凤. 施氮水平对冬小麦旗叶光合特性的调控效应[J]. 作物学报, 2007, 33(12): 1977-1981
[29]  Kumagai E, Araki T, Kubota F. Correlation of chlorophyll meter readings with gas exchange and chlorophyll fluorescence in flag leaves of rice (Oryza sativa L.) plants[J]. Plant Production Science, 2009, 12(1): 50-53
[30]  Pompelli M F, Martins S C V, Antunes W C, Chaves A R M, DaMatta F M. Photosynthesis and photoprotection in coffee leaves is affected by nitrogen and light availabilities in winter conditions[J]. Journal of Plant Physiology, 2010, 167(13): 1052-1060
[31]  张旺锋, 勾玲, 王振林, 李少昆, 余松烈, 曹连莆. 氮肥对新疆高产棉花叶片叶绿素荧光动力学参数的影响[J]. 中国农业科学, 2003, 36(8): 893-898
[32]  吴楚, 王政权, 孙海龙, 郭盛磊. 氮磷供给对长白落叶松叶绿素合成、叶绿素荧光和光合速率的影响[J]. 林业科学, 2005, 41(4): 31-36
[33]  Cruz J L, Mosquim P R, Pelacani C R, Araújo W L, DaMatta F M. Photosynthesis impairment in cassava leaves in response to nitrogen deficiency[J]. Plant and Soil, 2003, 257(2): 417-423
[34]  Cheng L L. Xanthophyll cycle pool size and composition in relation to the nitrogen content of apple leaves[J]. Journal of Experimental Botany, 2003, 54(381): 385-393
[35]  王镜岩, 朱圣庚, 徐长法. 生物化学[M]. 北京: 高等教育出版社, 197-229
[36]  Demmig B, Winter K, Kruger A, Czygan F C. Photoinhibition and zeaxanthin formation in intact leaves: a possible role of the xanthophyll cycle in the dissipation of excess light energy[J]. Plant Physiology, 1987, 84(2): 218-224
[37]  Havaux M. Carotenoids as membrane stabilizers in chloroplasts[J]. Trends Plant Science, 1998, 3(4): 147-151
[38]  Müller P, Li X P, Niyogi K K. Non-photochemical quenching. A response to excess light energy[J]. Plant Physiology, 2001, 125(4): 1558-1566
[39]  Verhoeven A S, Demmig-Adams B, Adams III W W. Enhanced employment of the xanthophyll cycle and thermal energy dissipation in spinach exposed to high light and N stress[J]. Plant Physiology, 1997, 113(3): 817-824
[40]  Adams III W W, Volk M, Hoehn A, Demmig-Adams B. Leaf orientation and the response of the xanthophyll cycle to incident light[J]. Oecologia, 1992, 90(3): 404-410
[41]  Nakaji T, Fukami M, Dokiya Y, Izuta T. Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus deniflora seedlings[J]. Trees-Struct and Function, 2001, 15(8): 453-461
[42]  赵平, 孙谷畴, 彭少麟. 植物氮素营养的生理生态学研究[J]. 生态科学, 1998, 17(2): 37-42
[43]  曹翠玲, 李生秀, 苗 芳. 氮素对植物某些生理生化过程影响的研究进展[J]. 西北农业大学学报, 1999, 27(4): 96-101

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133