Grassi G, Meir P, Cromer R, Tompkins D, Jarvis P G. Photosynthetic parameters in seedlings of Eucalyptus grandis as affected by rate of nitrogen supply[J]. Plant Cell and Environment, 2002, 25(12): 1677-1688
[2]
Cechin I, de Fátima Fumis T. Effect of nitrogen supply on growth and photosynthesis of sunflower plants grown in the greenhouse[J]. Plant Science, 2004, 166(5): 1379-1385
O'shea C J, Lynch B, Lynch M B, Callan J J, O'Doherty J V. Ammonia emissions and dry matter of separated pig manure fractions as affected by crude protein concentration and sugar beet pulp inclusion of finishing pig diets[J]. Agriculture Ecosystems and Environment, 2009, 131(3-4): 154-160
Zhao D L, Reddy K R, Kakani V G, Read J J, Carter G A. Corn (Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply[J]. Plant and Soil, 2003, 257(1): 205-218
[7]
Nevins D J, Loomis R S. Nitrogen nutrition and photosynthesis in sugar beet (Beta vulgaris L.)[J]. Crop Science, 1970, 10(1): 21-25
Cabrera-Bosquet L, Albrizio R, Araus J L, Nogués S. Photosynthetic capacity of field-grown durum wheat under different N availabilities: a comparative study from leaf to canopy[J]. Environmental and Experimental Botany, 2009, 67(1): 145-152
[12]
Kumagai E, Araki T, Ueno O. Comparison of susceptibility to photoinhibition and energy partitioning of absorbed light in photosystem II in flag leaves of two rice (Oryza sativa L.) cultivars that differ in their responses to nitrogen-deficiency[J]. Plant Production Science, 2010, 13(1): 11-20
[13]
Verhoeven A S, Demmig-Adams B, Adams III W W. Enhanced employment of the xanthophyll cycle and thermal energy dissipation in spinach exposed to high light and N stress[J]. Plant Physiology, 1997, 113(3): 817-824
[14]
Kato M C, Hikosaka K, Hirotsu N, Makino A, Hirose T. The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivation in photosystem II[J]. Plant and Cell Physiology, 2003, 44(3): 318-325
[15]
McMurtrey III J E, Chappelle E W, Kim M S, Meisinger J J, Corp L A. Distinguishing nitrogen fertilization levels in field corn (Zea mays L.) with actively induced fluorescence and passive reflectance measurements[J]. Remote Sensing of Environment, 1994, 47(1): 36-44
[16]
Hendrickson L, Furbank R T, Chow W S. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence[J]. Photosynthesis Research, 2004, 82(1): 73-81
[17]
Lichtenthaler H K. Chlorophylls and carotenoids-pigments of photosynthetic biomembranes[M]//Colowick S P, et al. (eds). Methods in Enzymology. San Diego, Academic press, 1987.
Racker E. Ribulose diphosphate carboxylase from spinach leaves[M]//In: Colowich S P, Kaplan N O (eds). Methods in Enzymology. New York: Academic press, 1962: 266-278.
Cimopi S, Gentili E, Guidi L, Soldatini G F. The effect of nitrogen deficiency on leaf gas exchange and chlorophyll fluorescence parameters in sunflower[J]. Plant Science, 1996, 118(2): 177-184
Kumagai E, Araki T, Kubota F. Correlation of chlorophyll meter readings with gas exchange and chlorophyll fluorescence in flag leaves of rice (Oryza sativa L.) plants[J]. Plant Production Science, 2009, 12(1): 50-53
[30]
Pompelli M F, Martins S C V, Antunes W C, Chaves A R M, DaMatta F M. Photosynthesis and photoprotection in coffee leaves is affected by nitrogen and light availabilities in winter conditions[J]. Journal of Plant Physiology, 2010, 167(13): 1052-1060
Cruz J L, Mosquim P R, Pelacani C R, Araújo W L, DaMatta F M. Photosynthesis impairment in cassava leaves in response to nitrogen deficiency[J]. Plant and Soil, 2003, 257(2): 417-423
[34]
Cheng L L. Xanthophyll cycle pool size and composition in relation to the nitrogen content of apple leaves[J]. Journal of Experimental Botany, 2003, 54(381): 385-393
[35]
王镜岩, 朱圣庚, 徐长法. 生物化学[M]. 北京: 高等教育出版社, 197-229
[36]
Demmig B, Winter K, Kruger A, Czygan F C. Photoinhibition and zeaxanthin formation in intact leaves: a possible role of the xanthophyll cycle in the dissipation of excess light energy[J]. Plant Physiology, 1987, 84(2): 218-224
[37]
Havaux M. Carotenoids as membrane stabilizers in chloroplasts[J]. Trends Plant Science, 1998, 3(4): 147-151
[38]
Müller P, Li X P, Niyogi K K. Non-photochemical quenching. A response to excess light energy[J]. Plant Physiology, 2001, 125(4): 1558-1566
[39]
Verhoeven A S, Demmig-Adams B, Adams III W W. Enhanced employment of the xanthophyll cycle and thermal energy dissipation in spinach exposed to high light and N stress[J]. Plant Physiology, 1997, 113(3): 817-824
[40]
Adams III W W, Volk M, Hoehn A, Demmig-Adams B. Leaf orientation and the response of the xanthophyll cycle to incident light[J]. Oecologia, 1992, 90(3): 404-410
[41]
Nakaji T, Fukami M, Dokiya Y, Izuta T. Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus deniflora seedlings[J]. Trees-Struct and Function, 2001, 15(8): 453-461