全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
核农学报  2014 

玉米HVA22基因启动子的克隆与功能验证

DOI: 10.11869/j.issn.100-8551.2014.04.0560, PP. 560-567

Keywords: 非生物胁迫,功能,诱导表达,玉米,启动子

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用转基因技术转化利用外源抗性基因,可提高玉米对非生物逆境的抵抗能力,改良其在不良环境下的稳产性。但是,在过去的研究中,大多采用组成型启动子启动外源抗逆基因过量表达,虽然可以改良转基因株系的抗逆性,但其生长发育受到不同程度抑制,适应性代价较大。用非生物逆境诱导启动子,可培育出只在逆境胁迫下表达的转基因抗逆品种,避免正常条件下抗逆基因过量表达的不良影响。本研究以水稻HVA22蛋白质的氨基酸序列为探针,搜索玉米基因组同源mRNA序列HVA22,用PlantCARE软件分析并同源克隆其上游启动子序列,实时荧光定量PCR验证HVA22基因在非生物逆境胁迫下的差异表达,构建HVA22基因启动子HVA22s启动GUS基因的表达载体,基因枪法转化玉米愈伤组织,GUS染色检测启动活性。结果表明,玉米HVA22s启动子长度1478bp,含有多种与非生物逆境应答相关的调控元件。HVA22基因在高温胁迫,以及脱落酸和乙烯诱导下上调表达。用HVA22s启动GUS基因转化的玉米愈伤组织,在脱落酸诱导、甘露醇模拟高渗处理、低温和高盐胁迫条件下,GUS染色均可显现靛蓝色斑点,说明HVA22s启动子确有非生物逆境启动功能,进一步验证其启动活性后可运用于玉米抗逆转基因研究。

References

[1]  Bruce W B, Edmeades G O, Barker T C. Molecular and physiological approaches to maize improvement for drought tolerance [J]. Journal of Experimental Botany, 2002, 53(366):13-25
[2]  Shuja M N, Ali W, Iqbal A, Ali I, Munir I, Ahmad D, Inamullah, Shaheenshah, Ahmad G, Khan M A, Swati Z A. Maize breeding for marginal lands: Physiological and molecular approach to decipher response and selection of maize recombinant inbred lines (RILs) under water deficit at early growth stage [J]. African Journal of Biotechnology, 2011, 10(18): 3521-3527
[3]  Gilmour S J, Sebolt A M, Salazar M P, Everard J D, Thomashow M F. Overexpression of Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation [J]. Plant Physiology, 2002, 124(4):1854-1865
[4]  Tao D, Mu Y, Fu F L, Li W C. Transformation of maize with trehalose rynthase gene cloned from Saccharomyces cerevisiae [J]. Biotechnology, 2008, 7(2):258-265
[5]  Karim S, Aronsson H, Ericson H, Pirhonen M, Leyman B, Welin B, Mantyla E, Palva E T, Van Dijck P, Holmstrom K O. Improved drought tolerance without undesired side effects in transgenic plants producing trehalose [J]. Plant Molecular Biology, 2007, 64(4):371-386
[6]  Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor [J]. Nature Biotechnology, 1999, 17(3):287-291
[7]  万小荣, 莫爱琼, 刘帅, 梁建华, 李玲, 余土元, 郑奕雄. 粤油7号花生AhNCED1基因启动子克隆及其活性分析[J]. 核农学报, 2011, 25(4):692-699
[8]  Zhang X W, Li C, Jiang Q T, Wei Y, Yao H, Chen H, Wu Q. Cloning and characterization of a cold inducible Pal promoter from Fagopyrum tataricum [J]. Central European Journal of Biology, 2014, 9(3):290-297
[9]  Ravikumar G, Manimaran P, Voleti S P, Subrahmanyam D, Sundaram R M, Bansal K C, Viraktamath B C, Balachandran S M. Stress-inducible expression of AtDREB1A transcription factor greatly improves drought stress tolerance in transgenic indica rice [J]. Transgenic Research, 2014, doi:10.1007/s11248-013-9776-6
[10]  Nakashima K, Jan A, Todaka D, Maruyama K, Goto S, Shinozaki K, Yamaguchi-Shinozaki K. Comparative functional analysis of six drought-responsive promoters in transgenic rice. Planta, 2014, 239(1):47-60
[11]  Yamaguchi-Shinozaki K, Mino M, Mundy J, Chua N H. Analysis of an ABA-responsive rice gene promoter in transgenic tobacco [J]. Plant Molecular Biology, 1990, 15(6):905-912
[12]  Ono A, Izawa T, Chua N H, Shimamoto K. The rab16B promoter of rice contains two distinct abscisic acid-responsive elements [J]. Plant Physiology, 1996, 112(2):483-491
[13]  Rai M, He C, Wu R. Comparative functional analysis of three abiotic stress-inducible promoters in transgenic rice [J]. Transgenic Research, 2009, 18(5):787-799
[14]  Buchanan C D, Klein P E, Mullet J E. Phylogenetic analysis of 5'-noncoding regions from the ABA-responsive rab16/17 gene family of sorghum, maize and rice provides insight into the composition, organization and function of cis-regulatory modules [J]. Genetics, 2004, 168(3):1639-1654
[15]  Cao X, Costa L M, Biderre-Petit C, Kbhaya B, Dey N, Perez P, McCarty D R, Gutierrez-Marcos J F, Becraft P W. Abscisic acid and stress signals induce Viviparous1 expression in seed and vegetative tissues of maize [J]. Plant Physiology, 2007, 143(2):720-731
[16]  Wu S, Yu Z, Wang F, Li W, Ye C, Li J, Tang J, Ding J, Zhao J, Wang B. Cloning, characterization, and transformation of the phosphoethanolamine N-methyltransferase gene (ZmPEAMT1) in maize (Zea mays L.) [J]. Molecular Biotechnology, 2007, 36(2):102-112
[17]  Shen Q, Uknes S J, Ho T-H D. Hormone response complex in a novel abscisic acid and cycloheximide-inducible barley gene [J]. The Journal of Biological chemistry, 1993, 268(31):23652-23660
[18]  Shen Q, Ho T H. Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element [J]. Plant Cell, 1995, 7(3):295-307
[19]  Shen Q, Chen C N, Brands A, Pan S M, Ho T H D. The sress- and abscisic acid-induced barley geneHVA22: developmental regulation and homologous in diverse organisms [J]. Plant Molecular Biology, 2001, 45(3):327-340
[20]  Zou X, Seemann J R, Neuman D, Shen Q J. A WRKY gene from creosote bush encodes an activator of the abscisic acid signaling pathway [J]. The Journal of Biological Chemistry, 2004, 279(53):55770-55779
[21]  Buell C R, Wing R A, McCombie W R, Messing J, Yuan Q, Ouyang S. In-depth view of structure, activity, and evolution of rice chromosome 10 [J]. Science, 2003, 300 (5625):1566-1569
[22]  Michel B E, Kaufmann M R. The osmotic potential of polyethylene glycol 6000 [J]. Plant Physiology, 1973, 51(5): 914-916
[23]  Chen P Y, Wang C K, Soong S C, To K Y. Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants [J]. Molecular Breeding, 2003, 11(4):287-293
[24]  Fu F L, He J, Zhang Z Y, Zhou S F, Zhang S Z, Li W C. Further improvement of N6 medium for callus induction and plant regeneration from maize immature embryos [J]. African Journal of Biotechnology, 2011,10(14): 2618-2624
[25]  Armstrong C L, Green C E. Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline [J]. Planta, 1985, 164(2): 207-214
[26]  Jefferson R A, Burgess S M, Hirseh D. β-glucuronidas from Escherichia coli as a gene-fusion marker [J]. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83(22):8447-8451

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133