Hrabak E M, Chan C W, Gribskov M, Harper J F, Choi J H, Halford N, KUdla J, Luan S, Nimmo H G, Sussman M R, Thomas M, Walker-simmons K, Zhu J K, Harmon A C. The Arabidopsis CDPK-SnRK superfamily of protein kinases [J]. Plant Physiology, 2003, 132: 666-680
[2]
Hirayama T, Umezawa T. The PP2C-SnRK2 complex. The central regulator of an abscisic acid signaling pathway [J]. Plant Signaling & Behavior,2010,5(2):160-163
[3]
Soon F F, Ng L M, Zhou X E, West G M, Kovach A, Tan M H, Suino-Powell KM, He Y, Xu Y, Chalmers MJ, Brunzelle JS, Zhang H, Yang H, Jiang H, Li J, Yong EL, Cutler S, Zhu JK, Griffin PR, Melcher K, Xu HE. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases [J]. Science, 2012, 335(6064): 85-88
[4]
Boudsocq M, Barbier-Brygoo H, Laurière C. Identification of Nine Sucrose Nonfermenting 1-related Protein Kinases 2 Activated by Hyperosmotic and Saline Stresses in Arabidopsis thaliana [J]. Journal of Biological Chemistry, 2004, 279: 41758-41766
[5]
Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T. Differential activation of rice sucrose nonfermenting 1-related protein kinase2 family by hyperosmotic stress and abscisic acid [J]. Plant Cell, 2004, 16:163-117
[6]
Kulik A, Wawer I, Krzywińska E, Bucholc M, Dobrowolska G. SnRK2 protein kinases-Key regulators of plant response to abiotic stresses [J]. Omics: a journal of integrative biology, 2011, 15(12):859-872
[7]
Fujii H, Verslues P E, Zhu J K. Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo [J]. Proceedings of the National Academy of Sciences, 2011, 108(4):717-722.
[8]
Mustilli A C, Merlot S, Vavasseur A, Fenzi F, Giraudat J. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production [J]. Plant Cell, 2002, 14(12): 3089-3099
[9]
Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K.The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis [J]. Journal of Biological Chemistry, 2006, 281: 5310-5318
[10]
Kimura T, Shibagaki N, Ohkama-Ohtsu N, Hayashi H, Yoneyama T, Davies JP, Fujiwara T. Arabidopsis SNRK2.3 protein kinase is involved in the regulation of sulfur-responsive gene expression and O-acetyl-l-serine accumulation under limited sulfur supply [J]. Soil Science & Plant Nutrition, 2006, 52 (2): 211-220
[11]
Fujii H, Verslues P.E, and Zhu JK. Identification of Two Protein Kinases Required for Abscisic Acid Regulation of Seed Germination, Root Growth, and Gene Expression in Arabidopsis [J]. The Plant Cell, 2007, 19: 485-494
[12]
Zheng Z, Xu X, Crosley R A, Greenwalt S A, Sun Y, Blakeslee B, Wang L, Ni W, Sopko M S, Yao C, Yau K, Burton S, Zhuang M, McCaskill D G, Gachotte D, Thompson M, Greene T W. The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis [J]. Plant Physiology, 2010, 153(1):99-113
[13]
Kulik A, Anielska-Mazur A, Bucholc M, Koen E, Szymańska K, mieńko A, Krzywinska E, Wawer I, Mcloughlin F, Ruszkowski D, Figlerowicz M, Testerink C, Sklodowska A, Wendehenne D, Dobrowolska G. SNF1-related protein kinases type 2 are involved in plant responses to cadmium stresses [J]. Plant Physiology, 2012:160(2), 868-883
[14]
Munnik T, Haring M A, Testerink C. The Snf1-related protein kinases SnRK2.4 and SnRK2.10 are involved in maintenance of root system architecture during salt stress [J]. Plant Journal. 2012, 2(3):436-449
[15]
Imes D, Mumm P, B?hm J, Al-Rasheid KA, Marten I, Geiger D, Hedrich R. Open stomata 1 (OST1) kinase controls R-type anion channel QUAC1 in Arabidopsis guard cells [J]. Plant Journal, 2013, 74(3):372-382
[16]
Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, & Hedrich R. (2009). Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair [J]. Proceedings of the National Academy of Sciences, 106(50), 21425-21430.
[17]
Melotto M, Underwood W, Koczan J, Nomura K, He S Y. Plant Stomata Function in Innate Immunity against Bacterial Invasion [J]. Cell, 2006, 126(5): 969-980
[18]
Xu M R, Huang L Y, Zhang F, Zhu L H, Zhou Y L, Li Z K. Genome-Wide Phylogenetic Analysis of Stress-Activated Protein Kinase Genes in Rice (OsSAPKs) and Expression Profiling in Response to Xanthomonas oryzae pv. oryzicola Infection [J]. Plant Molecular Biology Reporter, 2013: 1-9
[19]
Umezawa T, Yoshida R, Maruyama M, Yamaguchi-Shinozaki K, Shinozaki K. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana [J]. Proceedings of the National Academy of Sciences, 2004, 101(49): 17306-17311
[20]
Shin R, Alvarez S, Burch A Y, Jez J M, Schachtman D P. Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processe [J]. Proceedings of the National Academy of Sciences, 2007, 104(15): 6460-6465
[21]
Mizoguchi M, Umezawa T, Nakashima K, Kidokoro S, Takasaki H, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K.Two closely related subclass II SnRK2 protein kinases cooperatively regulate drought-inducible gene expression [J]. Plant Cell Physiology. 2010, 51(5):842-7
[22]
Hétu M F. Effect of nutritional status on phenotypic characteristics of Arabidopsis and alfalfa in relation to the expression of AtSnRK2.9 [D]. Canada:Queen's University, 2007, http://hdl.handle.net/1974/746
[23]
Vlad F, Turk B, Peynot P, Leung J, Merlot S. A versatile strategy to define the phosphorylation preferences of plant protein kinases and screen for putative substrates [J]. Plant Journal, 2008, 55(1):104-117
[24]
Boudsocq M, Droillard M J, Barbier-Brygoo H, Laurière C. Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid [J]. Plant Molecular Biology, 2007, 63(4):491-503
[25]
Vlad F, Droillard MJ, Valot B, Khafif M, Rodrigues A, Brault M, Zivy M, Rodriguez PL, Merlot S, Laurière C. Phospho-site mapping, genetic and in planta activation studies reveal key aspects of the different phosphorylation mechanisms involved in activation of SnRK2s [J]. Plant Journal, 2010,63(5):778-790
[26]
Mao X, Zhang H, Tian S, Chang X, Jing R. TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis [J]. Journal of Experimental Botany, 2010, 61(3):683-696
[27]
Zhang H, Mao X, Jing R, Chang X, Xie H. Characterization of a common wheat (Triticum aestivum L.) TaSnRK2.7 gene involved in abiotic stress responses [J]. Journal of Experimental Botany, 2011, 62(3):975-988
[28]
Huai J,Wang M, He J, Zheng J, Dong Z, Lv H, Zhao J, Wang G. Cloning and characterization of the SnRK2 gene family from Zea mays [J]. Plant Cell Report, 2008, 27: 1861-1868
[29]
Ying S, Zhang D F, Li H Y, Liu Y H, Shi Y S, Song Y C, Wang TY, Li Y. Cloning and characterization of a maize SnRK2 protein kinase gene confers enhanced salt tolerance in transgenic Arabidopsis [J]. Plant Cell Report, 2011, 30(9):1683-1699
[30]
LI Li-bin, ZHANG Yi-rong, LIU Kai-chang, NI Zhong-fu, FANG Zhi-jun, SUN Qi-xin, GAO Jianwei. Identification and Bioinformatics Analysis of SnRK2 and CIPK Family Genes in sorghum [J]. Agricultural Sciences in China, 2010, 9(1):19-30
[31]
Sun L, Wang Y P, Chen P, Ren J, Ji K, Li Q, Li P, Dai S J, Leng P. Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress [J]. Journal of Experimental Botany. 2011, 62(15): 5659-5669
Wang Y , Wu Y , Duan C, Chen P , Li Q, Dai S, Sun L, Ji K , Sun Y , Xu W, Wang C, Luo H, Wang Y , Leng P. The expression profiling of the CsPYL, CsPP2C and CsSnRK2 gene families during fruit development and drought stress in cucumber [J]. Journal of Plant Physiology, 2012, 169(18):1874-1882
[40]
Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, van der Vossen EA, Wu Y, Guo J, He J, Jia Z, Ren Y, Tian G, Lu Y, Ruan J, Qian W, Wang M, Huang Q, Li B, Xuan Z, Cao J, Asan, Wu Z, Zhang J, Cai Q, Bai Y, Zhao B, Han Y, Li Y, Li X, Wang S, Shi Q, Liu S, Cho WK, Kim JY, Xu Y, Heller-Uszynska K, Miao H, Cheng Z, Zhang S, Wu J, Yang Y, Kang H, Li M, Liang H, Ren X, Shi Z, Wen M, Jian M, Yang H, Zhang G, Yang Z, Chen R, Liu S, Li J, Ma L, Liu H, Zhou Y, Zhao J, Fang X, Li G, Fang L, Li Y, Liu D, Zheng H, Zhang Y, Qin N, Li Z, Yang G, Yang S, Bolund L, Kristiansen K, Zheng H, Li S, Zhang X, Yang H, Wang J, Sun R, Zhang B, Jiang S, Wang J, Du Y, Li S.. The genome of the cucumber, Cucumis sativus L [J]. Nature Genetics, 2009, 41(12): 1275-81