全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
核农学报  2014 

黄瓜、甜瓜和西瓜MLO基因家族的比较基因组学分析

DOI: 10.11869/j.issn.100-8551.2014.06.1006, PP. 1006-1017

Keywords: 黄瓜,甜瓜,西瓜,MLO,比较基因组分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

MLO基因是植物特有的一类基因家族,在调控植物抵抗生物和非生物胁迫方面起着重要作用。为了揭示葫芦科作物MLO基因的遗传变异及系统发育关系,本文以黄瓜、甜瓜和西瓜基因组数据为基础,利用生物信息学方法对其MLO基因家族进行鉴定与分析。结果发现,黄瓜、甜瓜和西瓜基因组中共含有42个MLO基因家族成员,每一个物种均含有14个成员,且保守性强;系统发育关系揭示了这些成员在黄瓜、甜瓜和西瓜基因组中并不呈现一一对应关系,表明MLO型基因在这3种植物分化之后分别发生了扩展和丢失;进一步将其与模式植物拟南芥、番茄、豌豆MLO型白粉病基因进行聚类分析:一方面,借助于拟南芥MLO基因的分类标准,揭示了在黄瓜、甜瓜和西瓜基因组中也存在双子叶植物MLO型白粉病基因的特异区组,他们各自至少包含3个候选的白粉病基因,序列比对进一步发现这些基因均具有MLO型白粉病基因的典型结构特征,如7个跨膜结构域、钙调蛋白结合区以及两个缩氨酸区域(I和II);另一方面,大部分区组中包含的MLO基因均来源于拟南芥和黄瓜、甜瓜和西瓜MLO基因家族的成员,表明了MLO基因家族在拟南芥和葫芦科作物分化之前就已经存在。EST表达分析表明MLO基因广泛地参与到黄瓜、甜瓜和西瓜器官的营养生长和生殖生长。研究结果为揭示黄瓜、甜瓜和西瓜MLO基因的进化关系、功能及克隆表达分析奠定了基础。

References

[1]  Devoto A, Piffanelli P, Nilsson I, Wallin E, Panstruga R, von Heijne G, Schulze-Lefert P.Topology, subcellular localization, and sequence diversity of the Mlo family in plants [J].Journal of Biological Chemistry, 1999, 274: 34993-35004
[2]  Kim M C, Lee S H, Kim J K, Chun H J, Choi M S, Chung W S, Moon B C, Kang C H, Park C Y, Yoo J H, Kang Y H, Koo S C, Koo Y D, Jung J C, Kim S T, Schulze-Lefert P, Lee S Y, Cho M J.Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein.Isolation and characterization of a rice Mlo homologue [J].Journal of Biological Chemistry, 2002, 277: 19304-19314
[3]  Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, Tpsch S, Vos P, Salamini F, Schulze-Lefert P.The barley Mlo gene: a novel control element of plant pathogen resistance [J].Cell, 1997, 88: 695-705
[4]  Piffanelli P, Zhou F, Casais C, Orme J, Jarosch B, Schaffrath U, Collins NC, Panstruga R, Schulze-Lefert P.The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli [J].Plant Physiology, 2002, 129(3): 1076-1085
[5]  Jrgensen I H.Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley [J].Euphytica, 1992, 63: 141-152.
[6]  Piffanelli P, Ramsay L, Waugh R, Benabdelmouna A, D'Hont A, Hollricher K, Jrgensen JH, Schulze-Lefert P, Panstruga R.A barley cultivation-associated polymorphism conveys resistance to powdery mildew [J].Nature, 2004, 430: 887-891
[7]  Consonni C, Humphry M E, Hartmann H A, Livaja M, Durner J, Westphal L, Vogel J, Lipka V, Kemmerling B, Schulze-Lefert P, Somerville S C, Panstruga R.Conserved requirement for a plant host cell protein in powdery mildew pathogenesis [J].Nature Genetics, 2006, 38: 716-720
[8]  Bai Y, Pavan S, Zheng Z, Zappel N F, Reinstdler A, Reinstdler A, Lotti C, De Giovanni C, Ricciardi L, Lindhout P, Visser R, Theres K, Panstruga R.Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of mlo function [J].Molecular Plant-Microbe Interactions, 2008, 21: 30-39
[9]  宁雪飞, 高兴旺, 李冠.甜瓜抗白粉病分子育种研究进展[J].北方园艺, 2013,(2): 180-184
[10]  Cohen R, Burger Y, Katzir N.Monitoring physiological races of Podosphaera xanthii (syn.Sphaerotheca fuliginea), the causal agent of powdery mildew in cucurbits: Factors affecting race identification and the importance for research and commerce [J].Phytoparasitica, 2004, 32(2):174-183
[11]  夏礼如, 钱春桃, 黄瓜MLO 型基因家族成员的鉴定及生物信息学分析[J].江苏农业科学, 2013, 41(2) : 17-20
[12]  Cheng H, Kong WP, Liu DS, Su YQ, He QW.Molecular cloning and expression analysis of CmMLO1 in melon [J].Molecular Biology Reports, 2012, 39 (2): 1903-1907
[13]  Cheng H, Kong W, Hou D, Lv J, Tao X.Isolation, characterization, and expression analysis of CmMLO2 in muskmelon [J].Molecular Biology Reports, 2013, 40(3): 2609-2615
[14]  Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, van der Vossen EA, Wu Y, Guo J, He J, Jia Z, Ren Y, Tian G, Lu Y, Ruan J, Qian W, Wang M, Huang Q, Li B, Xuan Z, Cao J, Asan, Wu Z, Zhang J, Cai Q, Bai Y, Zhao B, Han Y, Li Y, Li X, Wang S, Shi Q, Liu S, Cho WK, Kim JY, Xu Y, Heller-Uszynska K, Miao H, Cheng Z, Zhang S, Wu J, Yang Y, Kang H, Li M, Liang H, Ren X, Shi Z, Wen M, Jian M, Yang H, Zhang G, Yang Z, Chen R, Liu S, Li J, Ma L, Liu H, Zhou Y, Zhao J, Fang X, Li G, Fang L, Li Y, Liu D, Zheng H, Zhang Y, Qin N, Li Z, Yang G, Yang S, Bolund L, Kristiansen K, Zheng H, Li S, Zhang X, Yang H, Wang J, Sun R, Zhang B, Jiang S, Wang J, Du Y, Li S.The genome of the cucumber, Cucumis sativus L [J].Nature Genetics, 2009, 41: 1275-1281
[15]  Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, M.González V, Hénaff E, Cmara F, Cozzuto L, Lowy E, Alioto T, Capella-Gutiérrez S, Blanca J, Caizares J, Ziarsolo P, Gonzalez-Ibeas D, Rodríguez-Moreno L, Droege M, Du L, Alvarez-Tejado M, Lorente-Galdos B, Melé M, Yang L M, Weng Y Q, Navarro A, Marques-Bonet T, A.Aranda M, Nuez F, Picó B, Gabaldón T, Roma G, Guigó R, M.Casacuberta J, Arús P, Puigdomènech P.The genome of melon (Cucumis melo L.) [J].Proceeding of the National Academy Sciences USA, 109(29):11872-11877
[16]  Guo S H, Zhang J G, Sun H H, Salse J, J Lucas W, Zhang HY, Zheng Y, Mao L Y, Ren Y, Wang Z W, Min J M, Guo X S, Murat F, Ham B, Zhang Z L, Gao S, Huang M Y, Xu Y M, Zhong S L, Bombarely A, A Mueller L, Zhao H, He H J, Zhang Y, Zhang Z H, Huang S W, Tan T, Pang E L, Lin K, Hu Q, Kuang H H, Ni P X, Wang B, Liu J G, Kou Q H, Hou W J, Zou X H, Jiang J, Gong G Y, Klee K, Schoof H, Huang Y, Hu X S, Dong S S, Liang D Q, Wang J, Wu K, Xia Y, Zhao X, Zheng Z Q, Xing M, Liang X M, Huang B Q, Lv T, Wang J Y, Yin Y, Yi H P, Li R Q, Wu M Z, Levi A, Zhang X P, J Giovannoni J, Wang J, Li Y F, Fei Z J, Xu Y.The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions [J].Nature Genetics, 2013, 45(1): 51-58
[17]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S.MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Molecular Biology and Evolution, 2011, 28: 2731-2739
[18]  Hall TA.BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95 /98 /NT [J].Nucleic Acids Symposium Series, 1999, 41: 95-98
[19]  Pavan S, Schiavulli A, Appiano M, Marcotrigiano A R, Cillo F, Visser RG, Bai Y, Lotti C, Ricciardi L.Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus [J].Theoretical and Applied Genetics, 2011, 123: 1425-1431
[20]  Feechan A, M.Jermakow A, Torregrosa L, Panstruga R B.Dry I.Identification of grapevine MLO gene candidates involved in susceptibility to powdery mildew[J].Functional Plant Biology, 2008, 35: 1255-1266
[21]  Winterhagen P F.Howard S, Qiu W P, G.Kovács L.Transcriptional up-regulation of grapevine MLO genes in response to powdery mildew infection[J].American Journal of Enology and Viticulture, 2008, 59(2): 159-168
[22]  Panstruga R.Serpentine plant MLO proteins as entry portals for powdery mildew fungi [J].Biochemical Society Transactions, 2005, 33: 389-392
[23]  Schultheiss H, Dechert C, Kogel K H, Hückelhoven R.A small GTP-binding host protein is required for entry of powdery mildew fungus into epidermal cells of barley [J].Plant Physiology, 2002, 128: 1447-1454
[24]  Devoto A, Hartmann HA, Piffanelli P, Elliott C, Simmons C, Taramino G, Goh CS, Cohen FE, Emerson BC, Schulze-Lefert P, Panstruga R.Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family [J].Journal of Molecular Evolution, 2003, 56: 77-88
[25]  甘德芳,丁飞,庄丹,梁丹迪.黄瓜全基因组转录因子MADS-box家族基因序列特征分析[J].核农学报,2012,26(9):1249-1256
[26]  苗立祥,张豫超,杨肖芳,蒋桂华.森林草莓全基因组WRKY转录因子基因的鉴定与分析[J].核农学报,2012,26(8):1124-1131
[27]  Shen Q, Zhao J M, Du C F, Xiang Y, Cao J X, Qin X R.Genome-scale identification of MLO domain-containing genes in soybean (Glycine max L.Merr.) [J].Genes& Genetic Systems, 2012, 87(2): 89-98
[28]  薛皓月, 徐桂霞, 国春策, 山红艳, 孔宏智.拟南芥和琴叶拟南芥中MADS-box基因的比较进化分析[J].生物多样性, 2010, 18 (2): 109-119
[29]  Bai J, Pennill L A, Ning J, Lee S W, Ramalingam J, Webb C A, Zhao B, Sun Q, Nelson J C, Leach J E, Hulbert S H.Diversity in nucleotide binding site-leucine-rich repeat genes in cereals[J].Genome Research, 2002, 12: 1871-1884
[30]  Zhang S B, Chen C, Li L, Meng L, Singh J, Jiang N, Deng X W, He Z H, G.Lemaux P.Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family[J].Plant Physiology, 2005, 139: 1107-1124
[31]  Jain M, Tyagi A K, Khurana J P.Genome-wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa) [J].Genomics, 2006, 88: 360-371

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133