全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

玉米脱落酸受体基因家族的生物信息学分析

DOI: 10.11869/j.issn.100-8551.2015.09.1657, PP. 1657-1667

Keywords: 脱落酸,生物信息学,基因家族,玉米,受体

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究玉米脱落酸的应答机制,综合运用相关生物信息学软件,在玉米全基因组范围内扫描鉴定玉米脱落酸受体基因家族成员,分析其染色体定位、基因结构、启动子顺式作用元件和表达模式,预测其推导蛋白的结构和功能。结果表明,玉米基因组共存在13个脱落酸受体基因ZmPYL1~13,随机分布于10条染色体上,其推导蛋白都具有脱落酸受体的保守结构域CL2和CL4。根据推导蛋白的氨基酸序列多重比对,可将这13个基因分为Ⅰ、Ⅱ、Ⅲ3个亚家族,分别包括ZmPYL9~13、ZmPYL4~8和ZmPYL1~3。第Ⅰ亚家族的5个成员分别具有2~10个内含子,第Ⅲ亚家族的ZmPYL8包含1个内含子,而第Ⅱ和第Ⅲ亚家族的其余7个成员没有内含子。在各成员的上游启动子区域,均存在激素应答、非生物逆境胁迫诱导和发育调控等相关的众多顺式作用元件。蛋白质结构预测结果表明,第Ⅰ亚家族的5个成员均为同源二聚体,而第Ⅱ和第Ⅲ亚家族的各成员,除ZmPYL8和ZmPYL3以外,都以单体形式存在。而且,玉米脱落酸受体基因家族各成员在玉米不同发育阶段和不同组织器官中的表达模式也各不相同。本研究将为玉米脱落酸受体家族的深入研究以及玉米对非生物逆境胁迫应答的分子机理解析提供依据。

References

[1]  Duan L, Dietrich D, Ng C H, Chan P M Y, Bhalerao R, Bennett M J, Dinneny J R. Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings[J]. Plant Cell, 2013, 25(1):324-341
[2]  Cutler S R, Rodriguez P L, Finkelstein R R, Abrams S R. Abscisic acid: emergence of a core signaling network[J]. Annual Review of Plant Biology, 2010, 61: 651-679
[3]  Santner A, Estelle M. Recent advances and emerging trends in plant hormone signaling[J]. Nature, 2009, 459(7250): 1071-1078
[4]  Zhu J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53: 247-273
[5]  Pennisi E. Plant biology: Stressed out over a stress hormone[J]. Science, 2009, 324(5930):1012-1013
[6]  Hirayama T, Shinozaki K. Research on plant abiotic stress responses in the post-genome era: past, present and future[J]. The Plant Journal, 2010, 61(6):1041-1052
[7]  Ohkuma K, Lyon J L, Addicott F T, Smith O E. Abscisin II, an abscission-accelerating substance from young cotton fruit[J]. Science, 1963, 142(3599):1592-1593
[8]  Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism[J]. Annual Review of Plant Biology, 2005, 56:165-185
[9]  Yin P, Fan H, Hao Q, Yuan X, Wu D, Pang Y, Yan C, Li W, Wang J, Yan N. Structural insights into the mechanism of abscisic acid signaling by PYL proteins[J]. Nature Structural & Molecular Biology, 2009, 16(12):1230-1236
[10]  Melcher K, Ng L M, Zhou X E, Soon F F, Xu Y, Suino-Powell K M, Park S Y, Weiner J J, Fujii H, Chinnusamy V, Kovach A, Li J, Wang Y, Li J, Peterson F C, Jensen D R, Yong E L, Volkman B F, Cutler S R, Zhu J K, Xu H E. A gate latch-lock mechanism for hormone signaling by abscisic acid receptors[J]. Nature, 2009, 462(7273):602-608
[11]  Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E. Regulators of PP2C phosphatase activity function as abscisic acid sensors[J]. Science, 2009, 324(5930):1064-1068
[12]  Park S Y, Fung P, Nishimura N, Jensen D R, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow T F, Alfred S E, Bonetta D, Finkelstein R, Provart N J, Desveaux D, Rodriguez P L, McCourt P, Zhu J K, Schroeder J I, Volkman B F, Cutler S R. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins[J]. Science, 2009, 324(5930):1068-1071
[13]  van Loon L C, Rep M, Pieterse C M. Significance of inducible defense-related proteins in infectedplants[J]. Annual Review of Phytopathology, 2006, 44:135-162
[14]  Iyer L M, Koonin E V, Aravind L. Adaptations of the helix-grip fold for ligand binding and catalysis in the START domain superfamily[J]. Proteins, 2001, 43(2):134-144
[15]  He Y, Hao Q, Li W, Yan C, Yan N, Yin P. Identification and characterization of ABA receptors in Oryza sativa[J]. PLoS One, 2014, 9(4):e95246
[16]  Sun L, Wang Y P, Chen P, Ren J, Ji K, Li Q, Li P, Dai S J, Leng P. Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress[J]. Journal of Experimental Botany, 2011, 62(15):5659-5669
[17]  Boneh U, Biton I, Zheng C, Schwartz A, Ben-Ari G. Characterization of potential ABA receptors in Vitis vinifera[J]. Plant Cell Reports, 2012, 31(2):311-321
[18]  Chai Y M, Jia H F, Li C L, Dong Q H, Shen Y Y. FaPYR1 is involved in strawberry fruit ripening[J]. Journal of Experimental Botany, 2011, 62(14):5079-5089
[19]  Wang Y, Wang Y, Kai W, Zhao B, Chen P, Sun L, Ji K, Li Q, Dai S, Sun Y, Wang Y, Pei Y, Leng P. Transcriptional regulation of abscisic acid signal core components during cucumber seed germination and under Cu2+, Zn2+, NaCl and simulated acid rain stresses[J]. Plant Physiology and Biochemistry, 2014, 76: 67-76
[20]  Schnable P S, Ware D, Fulton R S, et al. The B73 maize genome: complexity, diversity, and dynamics[J]. Science, 2009, 326(5956):1112-1115
[21]  Hauser F, Waadt R, Schroeder J I. Evolution of abscisic acid synthesis and signaling mechanisms[J]. Current Biology, 2011, 21(9):R346-R355
[22]  Eddy S R. Accelerated profile HMM searches[J]. PLoS Computational Biology, 2011, 7(10):e1002195
[23]  Finn R D, Clements J, Eddy S R. HMMER web server: interactive sequence similarity searching[J]. Nucleic Acids Research, 2011, 39:W29-W37
[24]  Finn R D, Bateman A, Clements J, Coggill P, Eberhardt R Y, Eddy S R, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer R L L, Tate J, Punta M. Pfam: the protein families database[J]. Nucleic Acids Research, 2014, 42(1):D222-D230
[25]  Larkin M A, Blackshields G, Brown N P, Chenna R, McGettigan P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T J, Higgins D G, Clustal W. Clustal W and Clustal X version 2.0[J]. Bioinformatics, 2007, 23(21):2947-2948
[26]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28(10):2731-2739
[27]  Hall B G. Building phylogenetic trees from molecular data with MEGA[J]. Molecular Biology and Evolution, 2013, 30(5):1229-1235
[28]  Hanada K, Hase T, Toyoda T, Shinozaki K, Okamoto M. Origin and evolution of genes related to ABA metabolism and its signaling pathways[J]. Journal of Plant Research, 2011, 124(4):455-465
[29]  Voorrips R E. MapChart: software for the graphical presentation of linkage maps and QTLs[J]. Journal of Heredity, 2002, 93(1):77-78
[30]  郭安源, 朱其慧, 陈新, 罗静初. GSDS: 基因结构显示系统[J]. 遗传, 2007, 29(8):1023-1026
[31]  Lescot M, Dhais P, Thijs G, Marchal K, Moreau Y, van de Peer Y, Rouz P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30(1):325-327
[32]  Combet C, Blanchet C, Geourjon C, Deleage G. NPS@: network protein sequence analysis[J]. Trends in Biochemical Science, 2000, 25(3):147-150
[33]  Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino T G, Bertoni M, Bordoli K, Schwede T. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information[J]. Nucleic Acids Research, 2014, 42:W252-W258
[34]  Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T. The SWISS-MODEL Repository and associated resources[J]. Nucleic Acids Research, 2009, 37(suppl 1):D387-D392
[35]  Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins M R, Appel R D, Bairoch A. Protein identification and analysis tools on the ExPASy server[M]. New Jersey: Humana Press, 2005:571-607
[36]  Waters A J, Makarevitch I, Eichten S R, Swanson-Wagner R A, Yeh C-T, Xu W, Schnable P S, Vaughn M W, Gehring M, Springer N M. Parent-of-origin effects on gene expression and DNA methylation in the maize endosperm[J]. The Plant Cell, 2011, 23(12):4221-4233
[37]  Davidson R M, Hansey C N, Gowda M, Childs K L, Lin H, Vaillancourt B, Sekhon R S, de Leon N, Kaeppler S M, Jiang N, Buell C R. Utility of RNA sequencing for analysis of maize reproductive transcriptomes[J]. The Plant Genome, 2011, 4(3):191-203
[38]  Sekhon R S, Lin H, Childs K L, Hirsch C N, Buell C R, de Leon N, Kaeppler S M. Genome-wide atlas of transcription through maize development[J]. The Plant Journal, 2011, 66(4):553-562
[39]  Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart N J. An "electronic fluorescent pictograph" browser for exploring and analyzing large-scale biological data sets[J]. PLoS One, 2007, 2(8): e718
[40]  Eisen M B, Spellman P T, Brown P O, Botstein D. Cluster analysis and display of genome-wide expression patterns[J]. Proceedings of the National Academy of the Sciences of the United States of America, 1998, 95(25):14863-14868
[41]  Dalal M, Inupakutika M. Transcriptional regulation of ABA core signaling component genes in sorghum (Sorghum bicolor L. Moench)[J]. Molecular Breeding, 2014, 34(3): 1517-1525
[42]  Kolkman J A, Stemmer W P. Directed evolution of proteins by exon shuffling[J]. Nature Biotechnology, 2001, 19(5):423-428.
[43]  Long M, Betran E, Thornton K, Wang W. The origin of new genes: glimpses from the young and old[J]. Nature Reviews Genetics, 2003, 4(11):865-875
[44]  Xue T, Wang D, Zhang S, Ehlting J, Ni F, Jakab S, Zheng C, Zhong Y. Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis[J]. BMC Genomics, 2008, 9(1):550
[45]  Mutisya J, Sun C, Palmqvist S, Baguma Y, Odhiambo B, Jansson C. Transcriptional regulation of the sbeIIb genes in sorghum (Sorghum bicolor) and barley (Hordeum vulgare): importance of the barley sbeIIb second intron[J]. Journal of Plant Physiology, 2006, 163(7):770-780
[46]  Melcher K, Zhou X E, Xu H E. Thirsty plants and beyond: structural mechanisms of abscisic acid perception and signaling[J]. Current Opinion in Structural Biology, 2010, 20(6):722-729
[47]  杨书玲, 张龙雨, 张改生, 桑青, 刘红占, 朱启迪, 张新钵, 赵新亮. 小麦TaPDK基因的序列分析、原核表达及纯化[J]. 核农学报, 2013,27(8):1081-1089
[48]  张晓琳, 柴晓杰, 张婷, 余祝君, 薛飞. 盐藻CDPK基因的克隆与生物信息学分析[J]. 核农学报, 2013,27(4):418-424
[49]  Soon F F, Ng L M, Zhou X E, West G M, Kovach A, Tan M H, Suino-Powell K M, He Y, Xu Y, Chalmers M J, Brunzelle J S, Zhang H, Yang H, Jiang H, Li J, Yong E L, Cutler S, Zhu J K, Griffin P R, Melcher K, Xu H E. Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases[J]. Science, 2012, 335(6064):85-88
[50]  Xie T, Ren R, Zhang Y Y, Pang Y, Yan C, Gong X, He Y, Li W, Miao D, Hao Q, Deng H, Wang Z, Wu J W, Yan N. Molecular mechanism for inhibition of a critical component in the Arabidopsis thaliana abscisic acid signal transduction pathways, SnRK2.6, by protein phosphatase ABI1[J]. Journal of Biological Chemistry, 2012, 287(1):794-802
[51]  Nishimura N, Sarkeshik A, Nito K, Park S Y, Wang A, Carvalho P C, Lee S, Caddell D F, Cutler S R, Chory J, Schroeder J I. PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis[J]. Plant Journal, 2010, 61(2):290-299
[52]  Huai J, Wang M, He J, Zheng J, Dong Z, Lv H, Zhao J, Wang G. Cloning and characterization of the SnRK2 gene family from Zea mays[J]. Plant Cell Reports, 2008, 27(12):1861-1868
[53]  Ying S, Zhang D F, Li H Y, Liu Y H, Shi Y S, Song Y C, Wang T Y, Li Y. Cloning and characterization of a maize SnRK2 protein kinase gene confers enhanced salt tolerance in transgenic Arabidopsis[J]. Plant Cell Reports, 2011, 30(9):1683-1699
[54]  Vilela B, Moreno A, Capellades M, Pages M, Lumbreras L. ZmSnRK2.8 responds to ABA through the SnRK2-PP2C complex[J]. Maydica, 2012, 57(1):11-18

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133