全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

条锈菌侵染后不同抗性小麦叶片蛋白差异表达研究

DOI: 10.11869/j.issn.100-8551.2015.09.1649, PP. 1649-1656

Keywords: 蛋白质组学,小麦,条锈菌,抗病机理,差异表达

Full-Text   Cite this paper   Add to My Lib

Abstract:

为从蛋白组学水平揭示不同抗性小麦品种对条锈病的响应机制,以3个不同抗性小麦品种为材料,从蛋白质组调控的角度分析了条锈菌侵染后不同抗性小麦品种叶片蛋白质的表达差异。结果显示,侵染菌种CY32与混合菌后,高抗条锈病品系天9524、慢条锈病品种兰天15号和高感条锈病品种铭贤169叶片中一些蛋白的表达呈现出显著上调或下调,利用MALDI-TOF/TOFMS/MS质谱鉴定和MASCOT数据库检索,从3个小麦品种中共注释出16个差异表达蛋白点,其中铭贤169中7个,兰天15号中6个,天9524中3个。按照其功能分类,这些差异表达蛋白点分别参与了叶绿体光合作用,蛋白质合成,抗病响应等生理活动。这些差异表达蛋白可能与小麦响应条锈菌侵染过程有关,为抗条锈病相关基因的克隆与抗病响应机制的研究提供参考。

References

[1]  王晨芳, 黄丽丽, 张宏昌, 韩青梅, 朱琳, 冯浩, 康振生. 小麦-条锈菌互作过程中活性氧及保护酶系的变化研究[J]. 植物病理学报, 2009, 39(1): 52-60
[2]  Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust[J]. Science, 2009, 323(5919): 1357-1360
[3]  Li Q, Chen X M, Wang M N, Jing J X. Yr45, a new wheat gene for stripe rust resistance on the long arm of chromosome 3D[J]. Theoretical and Applied Genetics, 2011, 122(1): 189-197
[4]  Randhawa M, Bansal U, Valárik M, Klocová B, Dole?el J, Bariana H. Molecular mapping of stripe rust resistance gene Yr51 in chromosome 4AL of wheat[J]. Theoretical and Applied Genetics, 2014, 127(2): 317-324
[5]  方献平, 陈文岳, 马华升, 余红, 王淑珍, 忻雅. 植物应答病菌胁迫的抗性蛋白研究进展[J]. 核农学报, 2014, 28(5): 825-832
[6]  Wilkins M R, Pasquali C, Appel R D, Ou K, Golaz O, Sanchez J, Yan J X, Gooley A A, Hughes G, Humphery-Smith I, Williams K L, Hochstrasser D F. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis[J].Nature Biotechnology, 1996, 14(1):61-65
[7]  Wang Y, Yang L, Xu H, Li Q, Ma Z, Chu C. Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum[J]. Proteomics, 2005, 5(17): 4496-4503
[8]  Bazargani M M, Sarhadi E, Bushehri A A, Matros A, Mock H P, Naghavi M R, Hajihoseini V, Mardi M, Hajirezaei M R, Moradi F, Ehdaie B, Salekdeh G H. A proteomics view on the role of drought-induced senescence and oxidative stress defense in enhanced stem reserves remobilization in wheat[J]. Journal of Proteomics, 2011, 74(10): 1959-1973
[9]  Islam N, Tsujimoto H, Hirano H. Proteome analysis of diploid, tetraploid and hexaploid wheat: towards understanding genome interaction in protein expression[J]. Proteomics, 2003, 3(4): 549-557
[10]  封德顺, 徐勤迎, 王洪刚, 田纪春. 白粉病菌侵染后小麦叶片蛋白质变化的研究[J]. 华北农学报, 2007, 22(3): 123-126
[11]  李跃建, 姬红丽, 彭云良, 高荣, 高霞, 刘世贵. 应用双向电泳技术研究条锈菌侵染后小麦蛋白质的改变[J]. 四川大学学报: 工程科学版, 2005, 37(2): 80-85
[12]  Maytalman D, Mert Z, Baykal A T, Inan C, Günel A, Hasan?ebi S. Proteomic analysis of early responsive resistance proteins of wheat (Triticum aestivum) to yellow rust (Puccinia striiformis f. sp. tritici) using ProteomeLab PF2D[J]. Plant Omics Journal, 2013, 6(1): 24-35
[13]  Damerval C, De Vienne D, Zivy M, Thiellement H. Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins[J]. Electrophoresis, 1986, 7(1): 52-54
[14]  Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1): 248-254
[15]  Martin G B, Bogdanove A J, Sessa G. Understanding the functions of plant disease resistance proteins[J]. Annual Review of Plant Biology, 2003, 54(1): 23-61
[16]  Huzisige H, Ke B. Dynamics of the history of photosynthesis Research[J]. Photosynthesis Research, 1993, 38(2): 185-209
[17]  Fehser S, Beike U, St?veken J, Pretorius Z A,van der Westhuizen A J, Moerschbacher B M. Histological and initial molecular analysis of Ug99, the Sr31-breaking race of the wheat stem rust fungus[J]. Journal of Plant Pathology, 2010, 92(3): 709-720
[18]  Blume B, Nürnberger T, Nass N, Scheel D. Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley[J]. Plant Cell, 2000, 12(8): 1425-1440
[19]  Cady C W, Crabtree R H, Brudvig G W. Functional models for the oxygen-evolving complex of photosystem II[J]. Coordination Chemistry Reviews, 2008, 252(3): 444-455
[20]  Ghanotakis D F, Yocum C F. Photosystem II and the oxygen-evolving complex[J]. Annual Review of Plant Biology, 1990, 41(1): 255-276
[21]  Hurkman W J, Lane B G, Tanaka C K. Nucleotide sequence of a transcript encoding a germin-like protein that is present in salt-stressed barley (Hordeum vulgare L.) roots[J]. Plant Physiology, 1994, 104(2): 803
[22]  Manosalva P M, Davidson R M, Liu B, Zhu X, Hulbert S H, Leung H, Leach J E. A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice[J]. Plant Physiology, 2009, 149(1): 286-296
[23]  Ye J, Wang S, Zhang F, Xie D, Yao Y, Ye J. Proteomic analysis of leaves of different wheat genotypes subjected to PEG 6000 stress and rewatering[J]. Plant Omics Journal, 2013, 6(4): 286-294
[24]  Takahashi N, Hayano T, Suzuki M. Peptidyl-prolyl cis-trans isomerase is the cyclosporin A-binding protein cyclophilin[J]. Nature, 1989, 337(6206): 473-475
[25]  Song X, Rampitsch C, Soltani B, Mauthe W, Linning R, Banks T, McCallum B, Bakkeren G. Proteome analysis of wheat leaf rust fungus, Puccinia triticina, infection structures enriched for haustoria[J]. Proteomics, 2011, 11(5): 944-963
[26]  詹刚明, 王建锋, 王晓杰, 黄丽丽, 康振生. 中国小麦条锈菌生理小种演化及遗传重组[J]. 中国农业科学, 2011, 44(9): 1815-1822
[27]  万安民, 吴立人, 贾秋珍, 金社林, 李高宝, 王保通, 姚革, 杨家秀, 原宗英, 毕云青. 1997~2001 年我国小麦条锈菌生理小种变化动态[J]. 植物病理学报, 2003, 33(3): 261-266
[28]  郭慧娟, 张丛卓, 张晓军, 杨足君, 李欣, 詹海仙, 乔麟轶, 畅志坚. 小偃麦渗入系抗条锈性评价及细胞学鉴定[J]. 核农学报, 2014, 28(3): 371-377
[29]  马青, 商鸿生. 小麦与条锈病菌不亲和互作的超微结构[J]. 植物病理学报, 2002, 32(4): 306-311
[30]  马青, 商鸿生. 小麦高温抗锈品种与条锈菌互作的超微结构研究[J]. 中国农业科学, 2002, 35(8): 939-942

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133