全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

根内根生囊霉CD-1对5种番茄的促生作用

DOI: 10.11869/j.issn.100-8551.2015.11.2224, PP. 2224-2230

Keywords: 丛枝菌根真菌,番茄,侵染率,菌根依存度,促生作用

Full-Text   Cite this paper   Add to My Lib

Abstract:

为调查AM真菌在番茄上的应用效果,以5种不同番茄品种为材料,通过盆栽试验接种丛枝菌根(AM)真菌根内根生囊霉CD-1(RhizophagusirregularisCD-1),研究不同番茄品种间根系菌根侵染效率的差异,以及AM真菌对5种番茄品种的促生作用。结果显示,5种番茄都能与供试真菌建立共生关系,在番茄根部观察到丛枝菌根真菌的各种形态,包括泡囊、菌丝、孢子和丛枝,根系菌根侵染率都达到90%以上,并且品种间侵染率没有显著差异。测定番茄接种丛枝菌根后各种农艺性状指标,结果表明AM真菌能显著提高5种番茄的株高、叶柄数、地上鲜重、地上干重、根鲜重和根干重。其中番茄品种Z34的株高和地上部鲜重提高倍数最高,分别提高了1.05倍和2.12倍;Z30的叶柄数和地上部干重提高倍数最高,分别提高了0.27倍和2.22倍;Z33的根干种和根鲜重提高倍数最高,分别提高了9倍和3.8倍。5种番茄的菌根依存度为58.75%~72.11%,说明AM真菌的存在可促进5种番茄的生长。综上所述,丛枝菌根RhizophagusirregularisCD-1可以与不同的番茄品种形成良好的共生关系,并能显著促进番茄植株生长和发育,具有良好的应用价值。本研究可为AM真菌在番茄上的大规模应用提供理论依据和技术支持。

References

[1]  Hildebrandt U, Janetta K, Bothe H. Towards growth of arbuscular mycorrhizal fungi independent of a plant host[J]. Applied and Environmental Microbiology, 2002, 68(4): 1919-1924
[2]  Smith S E, Read D. Mycorrhizal symbiosis[M]. London: Academic Press, 2008: 145-187
[3]  宋勇春, 李晓林, 冯固. 接种VA菌根真菌对红三叶草利用土壤有机磷的影响[J]. 草业学报, 2000, 9(2): 38-44
[4]  边秀举, 胡林, 李晓林, 张福锁. VA菌根对坪草矿质养分吸收及草坪质量影响的研究[J].草业学报,2001,10(3): 42-46
[5]  Ruiz-Lozano J M, Azcón R. Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity[J]. Mycorrhiza, 2000, 10(3): 137-143
[6]  Vogel-Miku? K, Drobne D, Regvar M. Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspipraecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia[J]. Environmental Pollution, 2005, 133(2): 233-242
[7]  Steinkellner S, Hage-Ahmed K, García-Garrido J M, Illana A, Ocampo J A. Vierheilig H. A comparison of wild-type, old and modern tomato cultivars in the interaction with the arbuscular mycorrhizal fungus Glomus mosseae and the tomato pathogen Fusarium oxysporum f. sp. lycopersici[J]. Mycorrhiza, 2012, 22(3): 189-194
[8]  Hao Z, Fayolle L, van Tuinen D, Chatagnier O, Li X, Gianinazzi S, Gianinazzi-Pearson V. Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine[J]. Journal of Experimental Botany, 2012, 63(10): 3657-3672
[9]  刘润进, 李晓林. 丛枝菌根及其应用[M]. 北京: 科学出版社, 2000: 8-10
[10]  李晓林, 冯固. 丛枝菌根生态生理[M]. 北京: 华文出版社, 2001: 194-195
[11]  Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez E A, Driguez H, Bécard G, Dénarié J. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza[J]. Nature, 2011, 469(7328):58-63
[12]  Genre A, Chabaud M, Balzergue C, Puech-Pages V, Novero M, Rey T, Fournier J, Rochange S, Becard G, Bonfante P, Barker D G. Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone[J]. New Phytologist, 2013, 198(1):190-202
[13]  Harrison M J. Cellular programs for arbuscular mycorrhizal symbiosis [J]. Current Opinion in Plant Biology, 2012, 15(6):691-698
[14]  Chabaud M, Genre A, Sieberer B J, Faccio A, Fournier J, Novero M, Barker DG, Bonfante P. Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca2+ spiking in the legume and nonlegume root epidermis [J]. New Phytologist, 2011, 189(1):347-355
[15]  Sieberer B J, Chabaud M, Fournier J, Timmers A C, Barker D G. A switch in Ca2+ spiking signature is concomitant with endosymbiotic microbe entry into cortical root cells of Medicago truncatula[J]. Plant Journal, 2012, 69(5): 822-830
[16]  Guenoune D, Galili S, Phillips D A, Volpin H, Chet I, Okon Y, Kapulnik Y. The defense response elicited by the pathogen Rhizoctonia solani is suppressed by colonization of the AM-fungus Glomus intraradices[J]. Plant Science, 2001, 160(5): 925-932
[17]  Abdel-Fattah G M, Shabana Y M. Efficacy of the arbuscular mycorrhizal fungus Glomus clarum in protection of cowpea plants against root-rot pathogen Rhizoctonia solani[J]. Plant Disease Protect, 2002, 109(2): 207-215
[18]  Chandanie W A, Kubota M, Hyakumachi M. Interactions between plant growth promoting fungi and arbuscular mycorrhizal fungus Glomus mosseae and induction of systemic resistance to anthracnose disease in cucumber[J]. Plant and Soil, 2006, 286(1/2): 209-217
[19]  贺忠群, 贺超兴, 张志斌, 邹志荣, 王怀松. 不同丛枝菌根真菌对番茄生长及相关生理因素的影响[J]. 沈阳农业大学学报, 2006, 37(3): 308-312
[20]  Hammerschmidt R. Phenols and plant-pathogen interactions: the saga continues[J]. Physiological and Molecular Plant Pathology, 2005, 66(3): 77-78
[21]  Harrier L A, Watson C A. The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil borne pathogens in organic and/or other sustainable farming systems[J]. Pest Management Science, 2004, 60(2): 149-157
[22]  Dehne H W, Sch?nbeck F. Untersuchungen zum einfluβ der endotrophen mycorrhiza auf pflanzenkrankheiten[J]. Journal of Phytopathology, 1979, 95(1): 105-110
[23]  Akk?prü A, Demir S. Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria[J]. Journal of Phytopathology, 2005, 153(9): 544-550
[24]  Hage-Ahmed K, Krammer J, Steinkellner S. The intercropping partner affects arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. lycopersici interactions in tomato[J]. Mycorrhiza, 2013, 23(7): 543-550
[25]  李敏, 辛华, 郭绍霞, 孙太娟, 梁美霞, 刘润进. 丛枝菌根真菌对盐渍土中番茄和辣椒生长及矿质元素吸收的影响[J]. 莱阳农学院学报, 2005, 22(1): 38-41
[26]  贺忠群, 李焕秀, 汤浩茹, 贺超兴, 张志斌, 王怀松. 丛枝菌根真菌对NaCl胁迫下番茄内源激素的影响[J]. 核农学报, 2010, 24(5): 1099-1104
[27]  黄仁华, 陆云梅, 黄炜. AMF对假高粱分泌有机酸及吸收137Cs的影响[J]. 核农学报, 2013, 27(8): 1203-1208
[28]  Bécard G, Fortin J A. Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots[J]. New Phytologist, 1988, 108(2): 211-218
[29]  St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin J A. Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots[J]. Mycological Research, 1996, 100(3): 328-332
[30]  Phillips J M, Hayman D S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Transactions of the British Mycological Society, 1970, 55(1): 158-161
[31]  Smith L L, DiTommaso A, Lehmann J, Greipsson S. Effects of arbuscular mycorrhizal fungi on the exotic invasive vine pale swallow-wort (Vincetoxicum rossicum)[J]. Invasive Plant Science and Management, 2008,1(2): 142-152
[32]  van der Heijden M G A, Boller T, Wiemken A, Sanders I R. Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure[J]. Ecology, 1998, 79(6): 2082-2091
[33]  Colla G, Rouphael Y, Mattia E D, El-Nakhel C and Cardarelli M. Co-inoculation of Glomus intraradices and Trichoderma atrovirideacts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops[J]. Journal of the Science of Food and Agriculture, 2015, 95(8): 1706-1715
[34]  Fracetto G G M, Peres L E P, Mehdy M C, Lambais M R. Tomato ethylene mutants exhibit differences in arbuscular mycorrhiza development and levels of plant defense-related transcripts[J]. Symbiosis, 2013, 60(3): 155-167
[35]  Hajiboland R, Aliasgharzadeh N, Laiegh S F, Poschenrieder C. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants[J]. Plant and Soil, 2010, 331(1): 313-327
[36]  van der Heijden M G A. Arbuscular mycorrhizal fungi as determinant of plant diversity: in search of underlying mechanisms and general principles[M]. Heidelberg: Springer-Verlag, 2002: 243-265

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133