全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Polishing Sapphire Substrates by 355?nm Ultraviolet Laser

DOI: 10.1155/2012/238367

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper tries to investigate a novel polishing technology with high efficiency and nice surface quality for sapphire crystal that has high hardness, wear resistance, and chemical stability. A Q-switched 355?nm ultraviolet laser with nanosecond pulses was set up and used to polish sapphire substrate in different conditions in this paper. Surface roughness of polished sapphire was measured with surface profiler, and the surface topography was observed with scanning electronic microscope. The effects of processing parameters as laser energy, pulse repetition rate, scanning speed, incident angle, scanning patterns, and initial surface conditions on surface roughness were analyzed. 1. Introduction Sapphire is a kind of important photoelectronic material with excellent properties such as high hardness, wear resistance, and chemical stability. So it is applied not only as important substrate for GaN and then LED, but also as important components for solid lasers, IR window and precision bearing. All these applications require sapphire surface with high machining quality and thin damaged layer [1]. Conventional polishing techniques as abrasive polishing, chemical mechanical polishing (CMP), and chemical polishing [2] are very difficult to get high quality for sapphire crystal polishing due to machining defects like mechanical scratch, low efficiency, and yield. Laser polishing technology shows potential for sapphire crystal because of high polishing quality and efficiency. Recently, series of studies on laser polishing of diamond film, polymer, ceramics, fiber, and metal have been conducted [3–7]. However, the research on laser polishing of sapphire crystal is still lack. Polishing sapphire substrate [8] by ultraviolet laser with picosecond pulses had been conducted in our previous research. The results indicated that better surface quality can be achieved via shorter wavelength and pulse duration. However, the high cost of picosecond ultraviolet lasers affects its further industrialization. Currently, the Q-switched ultraviolet laser with wavelength of 355?nm and nanosecond pulses is widely introduced to industry. Such type of ultraviolet lasers can be used to machine and remove sapphire material in micrometer scale. Thus, a Q-switched 355?nm ultraviolet laser with nanosecond pulses was used to polish sapphire substrate in this paper. The effects of processing parameters as laser energy, pulse repetition rate, laser scanning speed, incident angle, scanning patterns, and initial sapphire surface conditions on surface quality were analysed according to the

References

[1]  H. Park and H. M. Chan, “A novel process for the generation of pristine sapphire surfaces,” Thin Solid Films, vol. 422, no. 1-2, pp. 135–140, 2002.
[2]  X. Guo, X. Wei, and X. Xie, “Development of sapphire polishing technology,” Mechanical & Electrical Engineering Technology, vol. 35, no. 9, pp. 76–78, 2006.
[3]  Z. Li, P. Li, J. Fan, R. Fang, and D. Zhang, “Energy accumulation effect and parameter optimization for fabricating of high-uniform and large-area period surface structures induced by femtosecond pulsed laser,” Optics and Lasers in Engineering, vol. 48, no. 1, pp. 64–68, 2010.
[4]  I.-B. Sohn, Y.-C. Noh, S.-C. Choi, D.-K. Ko, J. Lee, and Y.-J. Choi, “Femtosecond laser ablation of polypropylene for breathable film,” Applied Surface Science, vol. 254, no. 16, pp. 4919–4924, 2008.
[5]  M. Folwaczny, A. Mehl, C. Haffner, and R. Hickel, “Polishing and coating of dental ceramic materials with 308?nm XeCL excimer laser radiation,” Dental Materials, vol. 14, no. 3, pp. 186–193, 1998.
[6]  M. Udrea, H. Orun, and A. Alacakir, “Laser polishing of optical fiber end surface,” Optical Engineering, vol. 40, no. 9, pp. 2026–2030, 2001.
[7]  T. M. Shao, M. Hua, H. Y. Tam, and E. H. M. Cheung, “An approach to modelling of laser polishing of metals,” Surface and Coatings Technology, vol. 197, no. 1, pp. 77–84, 2005.
[8]  X. Wei, X. Guo, and X. Xie, “Influence of the condition parameters on UV pulsed laser polishing of sapphire wafer,” in Proceedings of the 8th Pacific Rim Conference on Lasers and Electro-Optics (CLEO/Pacific Rim '09), September 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133