全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Detailed Theoretical Model for Adjustable Gain-Clamped Semiconductor Optical Amplifier

DOI: 10.1155/2012/764084

Full-Text   Cite this paper   Add to My Lib

Abstract:

The adjustable gain-clamped semiconductor optical amplifier (AGC-SOA) uses two SOAs in a ring-cavity topology: one to amplify the signal and the other to control the gain. The device was designed to maximize the output saturated power while adjusting gain to regulate power differences between packets without loss of linearity. This type of subsystem can be used for power equalisation and linear amplification in packet-based dynamic systems such as passive optical networks (PONs). A detailed theoretical model is presented in this paper to simulate the operation of the AGC-SOA, which gives a better understanding of the underlying gain clamping mechanics. Simulations and comparisons with steady-state and dynamic gain modulation experimental performance are given which validate the model. 1. Introduction Semiconductor optical amplifiers (SOAs) have attracted considerable attention during the last two decades, for use in evolving optical communication networks. SOAs can be used as not only optical amplifiers, but also signal processing devices such as wavelength converters [1], optical switches [2], and electro-optical mixers [3]. In terms of optical amplification, the key issue of operating SOAs is the management of the input optical signal power, which must be maintained within the linear regime of operation; otherwise the device would be driven into saturation causing unwanted intersymbol interference (ISI) or patterning. In order to solve this implementation problem, many different types of gain-clamped semiconductor optical amplifiers (GC-SOAs) have been proposed [4, 5]. Recently, an adjustable gain-clamped semiconductor optical amplifier (AGC-SOA) designed to maximize the output saturated power at a clamped gain which can be adjusted was reported [6]. 2. AGC-SOA The AGC-SOA is a semiconductor optical amplifier topology which has the unique capability to provide variable gain and maintain linear operation through gain clamping over a wide (40?dB) dynamic range, without compromising the saturable output power of the device [6]. A key advantage of this approach is that there are no mechanical tuning elements, and hence the gain can be adjusted via direct electrical control at ns timescales. While the operation of this device has been presented previously for the static gain case [6], and its behaviour under dynamic gain modulation conditions [7], the underlying mechanics is not well understood. Here, a theoretical model for an AGC-SOA has been established, based on the wideband steady-state numerical model of a SOA [8]. The travelling amplified

References

[1]  L. Banchi, M. Presi, A. D’Errico, G. Contestabile, and E. Ciaramella, “All-optical wavelength 10 and 40?Gbit/s RZ-to-NRZ format and wavelength conversion using semiconductor optical amplifiers,” Journal of Lightwave Technology, vol. 28, no. 1, pp. 32–38, 2010.
[2]  A. Rostami, H. B. A. Nejad, R. M. Qartavol, and H. R. Saghai, “Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers,” IEEE Journal of Quantum Electronics, vol. 46, no. 3, pp. 354–360, 2010.
[3]  C. Bohémond, A. Sharaiha, T. Rampone, and H. Khaleghi, “Electro-optical radiofrequency mixer based on semiconductor optical amplifier,” Electronics Letters, vol. 47, no. 5, pp. 331–333, 2011.
[4]  P. Doussiere, F. Pommereau, J. Y. Emery et al., “1550?nm polarization independent DBR gain clamped SOA with high dynamic input power range,” in Proceedings of the 22nd European Conference on Optical Communication (ECOC '96), vol. 3, pp. 169–172, September 1996.
[5]  D. A. Francis, S. P. DiJaili, and J. D. Walker, “A single-chip linear optical amplifier,” in Proceedings of the Optical Fiber Communication Conference, pp. PD13/1–PD13/3, Anaheim, Calif, USA, March 2001.
[6]  C. Michie, A. E. Kelly, I. Armstrong, I. Andonovic, and C. Tombling, “An adjustable gain-clamped semiconductor optical amplifier (AGC-SOA),” Journal of Lightwave Technology, vol. 25, no. 6, pp. 1466–1473, 2007.
[7]  L. Liu, C. Michie, A. E. Kelly, and I. Andonovic, “Packet equalisation in PONs using adjustable gain-clamped semiconductor optical amplifiers (AGC-SOA),” in Proceedings of the International Conference on Transparent Optical Networks (ICTON '11), pp. 1–4, Stockholm, Sweden, June 2011.
[8]  M. J. Connelly, “Wideband semiconductor optical amplifier steady-state numerical model,” IEEE Journal of Quantum Electronics, vol. 37, no. 3, pp. 439–447, 2001.
[9]  ITU-T Recommendation G.987.2, “10-Gigabit-capable passive optical networks (XG-PON): physical media dependent (PMD) layer specification,” January 2010.
[10]  X. H. Jia, “Theoretical investigation of gain-clamped semiconductor optical amplifiers using the amplified spontaneous emission compensating effect,” Journal of the Optical Society of America B, vol. 23, no. 12, pp. 2503–2510, 2006.
[11]  A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, “Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation,” IEEE Journal of Quantum Electronics, vol. 42, no. 3, Article ID 01597418, pp. 313–323, 2006.
[12]  C. Y. Jin, Y. Z. Huang, L. J. Yu, and S. L. Deng, “Detailed model and investigation of gain saturation and carrier spatial hole burning for a semiconductor optical amplifier with gain clamping by a vertical laser field,” IEEE Journal of Quantum Electronics, vol. 40, no. 5, pp. 513–518, 2004.
[13]  S. Verspurten, G. Morthier, and R. Baets, “Experimental and numerical small-signal analysis of two types of gain-clamped semiconductor optical amplifiers,” IEEE Journal of Quantum Electronics, vol. 42, no. 3, Article ID 01597417, pp. 302–312, 2006.
[14]  S. L. Chuang, Physics of Optoelectronic Devices, Wiley-Interscience, New York, NY, USA, 1995.
[15]  M. J. Connelly, “Wide-band steady-state numerical model and parameter extraction of a tensile-strained bulk semiconductor optical amplifier,” IEEE Journal of Quantum Electronics, vol. 43, no. 1, pp. 47–56, 2007.
[16]  A. Yariv, Optical Electronics in Modern Communications, Oxford University Press, New York, NY, USA, 5th edition, 1997.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133