全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Interferometry with Vortices

DOI: 10.1155/2012/517591

Full-Text   Cite this paper   Add to My Lib

Abstract:

Interference of optical beams with optical vortices is often encountered in singular optics. Since interferometry makes the phase observable by intensity measurement, it brings out a host of applications and helps to understand the optical vortex. In this article we present an optical vortex interferometer that can be used in optical testing and has the potential to increase the accuracy of measurements. In an optical vortex interferometer (OVI), a lattice of vortices is formed, and the movement of the cores of these vortices is tracked when one of the interfering beams is deformed. Instead of multiple vortices in an OVI, an isolated single vortex also finds applications in optical testing. Finally, singularity in scalar and vector fields is presented, and the relation between them is illustrated by the superposition of these beams. 1. Introduction Phase singularities in light waves appear at points or lines in a beam cross section, where the phase of the wave changes abruptly [1–6]. When this abrupt phase change occurs along a line, it is called edge dislocation, and when it occurs at a point, it is called a screw dislocation. Screw dislocation type phase singularity is also called an optical vortex. The singular point with undefined phase and zero amplitude forms the vortex core. A wavefront with optical vortex (OV) has a characteristic helical geometry. As the vortex beam propagates, this zero amplitude point draws a curve in space. The helical wavefront winds about this dark thread of amplitude. The helix may be left- or right- handed, and accordingly the vortex is considered to possess positive or negative topological charge. Optical vortices possess a number of interesting features. On the flip side, they can cause stagnation problems in phase retrieval where wavefront geometry is reconstructed [7, 8] and in diffractive optics [9, 10]. On the positive side, since the seminal work published by Nye and Berry [1], hundreds of papers have been published on various aspects of the OVs. Large number of papers is devoted to optical vortex applications. In a vortex coronagraph an optical vortex lens is used as a filter that enables detection of a feeble star in bright background [11–13]. Optical vortices are useful in optical tweezers with dark traps [14–17]. They are useful in fluorescence microscopy where the STED (stimulated emission depletion) pulse is used for dumping the fluorescence response of the molecule located outside the dark core of the optical vortex [18–20]. Vortices are useful in collimation testing and in the detection of elevation and

References

[1]  J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. Roy. Soc. Lond. A, vol. 336, pp. 165–190, 1974.
[2]  J. F. Nye, Natural Focusing and Fine Structure of Light, Institute of Physics Publishing, 1999.
[3]  M. Vasnetsov and K. Staliunas, Eds., Optical Vortices, Nova Science, Huntington, NY, USA, 1999.
[4]  M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Progress in Optics, vol. 42, pp. 219–276, 2001.
[5]  M. R. Dennis, K. O'Holleran, and M. J. Padgett, “singular optics: optical vortices and polarization singularities,” Progress in Optics, vol. 53, pp. 293–363, 2009.
[6]  A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, “Optical vortices and vortex solitons,” Progress in Optics, vol. 47, pp. 291–391, 2005.
[7]  K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform,” The Journal of the Optical Society of America A, vol. 18, no. 8, pp. 1862–1870, 2001.
[8]  K. G. Larkin, “Natural demodulation of two-dimensional fringe patterns. II. Stationary phase analysis of the spiral phase quadrature transform,” The Journal of the Optical Society of America A, vol. 18, no. 8, pp. 1871–1881, 2001.
[9]  D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping Theory, Algorithms and Software, John Wiley & Sons, New York, NY, USA, 1998.
[10]  P. Senthilkumaran, F. Wyrowski, and H. Schimmel, “Vortex Stagnation problem in iterative Fourier transform algorithms,” Optics and Lasers in Engineering, vol. 43, no. 1, pp. 43–56, 2005.
[11]  G. A. Swartzlander Jr., “Peering into darkness with a vortex spatial filter,” Optics Letters, vol. 26, no. 8, pp. 497–499, 2001.
[12]  D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” The Astrophysical Journal, vol. 633, no. 2 I, pp. 1191–1200, 2005.
[13]  G. A. Swartzlander Jr., E. L. Ford, R. S. Abdul-Malik et al., “Astronomical demonstration of an optical vortex coronagraph,” Optics Express, vol. 16, no. 14, pp. 10200–10207, 2008.
[14]  K. T. Gahagan and G. A. Swartzlander Jr., “Optical vortex trapping of particles,” Optics Letters, vol. 21, no. 11, pp. 827–829, 1996.
[15]  D. G. Grier, “A revolution in optical manipulation,” Nature, vol. 424, no. 6950, pp. 810–816, 2003.
[16]  N. Friedman, A. Kaplan, and N. Davidson, “Dark optical traps for cold atoms,” Advances in Atomic, Molecular and Optical Physics, vol. 48, pp. 99–151, 2002.
[17]  D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. D. Fabrizio, “Laser trapping and micro-manipulation using optical vortices,” Microelectronic Engineering, vol. 78-79, no. 1–4, pp. 125–131, 2005.
[18]  S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Optics Letters, vol. 19, no. 11, pp. 780–782, 1994.
[19]  S. W. Hell, “Increasing the resolution of far-field fluorescence microscopy by point-spread-function engineering, topics,” in Fluorescence Spectroscopy; 5: Nonlinear and Two-Photon-Induced Fluorescence, J. Lakowicz, Ed., pp. 361–426, Plenum Press, New York, NY, USA, 1997.
[20]  T. A. Klar, E. Engel, and S. W. Hell, “Breaking Abbe's diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes,” Physical Review E, vol. 64, no. 6, part 2, Article ID 066613, 9 pages, 2001.
[21]  L. Allen, S. M. Barnett, and M. J. Padgett, Eds., Optical Angular Momentum, Institute of Physics Publishing, 2003.
[22]  L. Allen, M. J. Padgett, and M. Babiker, “IV the orbital angular momentum of light,” Progress in Optics, vol. 39, pp. 291–372, 1999.
[23]  K. W. Nicholls and J. F. Nye, “Three-beam model for studying dislocations in wave pulses,” Journal of Physics A, vol. 20, no. 14, article 013, pp. 4673–4696, 1987.
[24]  I. Freund, N. Shvartsman, and V. Freilikher, “Optical dislocation networks in highly random media,” Optics Communications, vol. 101, no. 3-4, pp. 247–264, 1993.
[25]  O. V. Angelsky, R. N. Besaha, and I. I. Mokhun, “Appearance of wave front dislocations under interference among beams with simple wave fronts,” Optica Applicata, vol. 27, no. 4, pp. 273–278, 1997.
[26]  M. V. Berry and M. R. Dennis, “Knotting and unknotting of phase singularities: helmholtz waves, paraxial waves and waves in 2 + 1 spacetime,” Journal of Physics A, vol. 34, no. 42, pp. 8877–8888, 2001.
[27]  M. V. Berry and M. R. Dennis, “Topological events on wave dislocation lines: birth and death of loops, and reconnection,” Journal of Physics A, vol. 40, no. 1, pp. 65–74, 2007.
[28]  K. O'Holleran, M. J. Padgett, and M. R. Dennis, “Topology of optical vortex lines formed by the interference of three, four, and five plane waves,” Optics Express, vol. 14, no. 7, pp. 3039–3044, 2006.
[29]  P. Kurzynowski, W. A. Wo?niak, and M. Borwińska, “Regular lattices of polarization singularities: their generation and properties,” Journal of Optics, vol. 12, no. 3, Article ID 035406, 2010.
[30]  I. Bialynikcki-Birula and S. Bialynikcka-Birula, “Vortex lines in electromagnetic field,” Physical Review A, vol. 67, Article ID 062114, 2003.
[31]  I. Bialynicki-Birula, “Electromagnetic vortex lines riding atop null solutions of the Maxwell equations,” Journal of Optics A, vol. 6, no. 5, pp. S181–S183, 2004.
[32]  Y. Lin, D. Rivera, Z. Poole, and K. P. Chen, “Five-beam interference pattern controlled through phases and wave vectors for diamondlike photonic crystals,” Applied Optics, vol. 45, no. 31, pp. 7971–7976, 2006.
[33]  J. Becker, P. Rose, M. Boguslawski, and C. Denz, “Systematic approach to complex periodic vortex and helix lattices,” Optics Express, vol. 19, no. 10, pp. 9848–9862, 2011.
[34]  J. Masajada and B. Dubik, “Optical vortex generation by three plane wave interference,” Optics Communications, vol. 198, no. 1–3, pp. 21–27, 2001.
[35]  S. Vyas and P. Senthilkumaran, “Interferometric optical vortex array generator,” Applied Optics, vol. 46, no. 15, pp. 2893–2898, 2007.
[36]  W. A. Wo?niak and P. Kurzynowski, “Compact spatial polariscope for light polarization state analysis,” Optics Express, vol. 16, no. 14, pp. 10471–10479, 2008.
[37]  J. Masajada, Optical Vortices and Their Application to Interferometry, Oficyna Wydawnicza Politechniki Wroc?awskiej, Wroc?aw, Poland, 2004.
[38]  J. Masajada, “The interferometry based on regular lattice of optical vortices,” Optica Applicata, vol. 37, no. 1-2, pp. 167–185, 2007.
[39]  J. Masajada, A. Popio?ek-Masajada, and D. M. Wieliczka, “The interferometric system using optical vortices as phase markers,” Optics Communications, vol. 207, no. 1–6, pp. 85–93, 2002.
[40]  J. Masajada, “Small-angle rotations measurement using optical vortex interferometer,” Optics Communications, vol. 239, no. 4-6, pp. 373–381, 2004.
[41]  A. Popio?ek-Masajada, M. Borwińska, and W. Fr?czek, “Testing a new method for small-angle rotation measurements with the optical vortex interferometer,” Measurement Science and Technology, vol. 17, no. 4, pp. 653–658, 2006.
[42]  M. Borwińska, A. Popio?ek-Masajada, and B. Dubik, “Reconstruction of a plane wave's tilt and orientation using an optical vortex interferometer,” Optical Engineering, vol. 46, no. 7, Article ID 073604, 2007.
[43]  E. Fr?czek and J. Mroczka, “An accuracy analysis of small angle measurement using the Optical Vortex Interferometer,” Metrology and Measurement Systems, vol. 16, no. 2, pp. 249–258, 2009.
[44]  P. Kurzynowski, W. A. Wo?niak, and E. Fr?czek, “Optical vortices generation using the Wollaston prism,” Applied Optics, vol. 45, no. 30, pp. 7898–7903, 2006.
[45]  A. Popio?ek-Masajada, P. Kurzynowski, W. A. Wozniak, and M. Borwińska, “Measurements of the small wave tilt using the optical vortex interferometer with the Wollaston compensator,” Applied Optics, vol. 46, no. 33, pp. 8039–8044, 2007.
[46]  P. Kurzynowski and M. Borwińska, “Generation of vortex-type markers in a one-wave setup,” Applied Optics, vol. 46, no. 5, pp. 676–679, 2007.
[47]  M. Borwińska, A. Popio?ek-Masajada, and P. Kurzynowski, “Measurements of birefringent media properties using optical vortex birefringence compensator,” Applied Optics, vol. 46, no. 25, pp. 6419–6426, 2007.
[48]  W. A. Wo?niak and M. Banach, “Measurements of linearly birefringent media parameters using the optical vortex interferometer with the Wollaston compensator,” Journal of Optics A, vol. 11, no. 9, Article ID 094024, 2009.
[49]  W. Fr?czek and J. Mroczka, “Optical vortices as phase markers to wave-front deformation measurement,” Metrology and Measurement Systems, vol. 15, no. 4, pp. 433–440, 2008.
[50]  C. V. Felde, P. V. Polyanski, and H. V. Bogatyryova, “Comparative analysis of techniques for diagnostics of phase singularities,” Ukrainian Journal of Physical Optics, vol. 9, no. 2, pp. 82–90, 2008.
[51]  I. Mokhun and Y. Galushko, “Detection of vortex sign for scalar speckle fields,” Ukrainian Journal of Physical Optics, vol. 9, no. 4, pp. 246–255, 2008.
[52]  V. G. Denisenko, A. Minovich, A. S. Desyatnikov, W. Krolikowski, M. S. Soskin, and Y. S. Kivshar, “Mapping phases of singular scalar light fields,” Optics Letters, vol. 33, no. 1, pp. 89–91, 2008.
[53]  L. E. E. De Araujo and M. E. Anderson, “Measuring vortex charge with a triangular aperture,” Optics Letters, vol. 36, no. 6, pp. 787–789, 2011.
[54]  E. Fr?czek, W. Fr?czek, and J. Masajada, “The new method of topological charge determination of optical vortices in the interference field of the optical vortex interferometer,” Optik, vol. 117, no. 9, pp. 423–425, 2006.
[55]  E. Fr?czek, W. Fr?czek, and J. Mroczka, “The Experimental method for topological charge determination of optical vortices in a regular net,” Optical Engineering, vol. 44, no. 2, Article ID 025601, 2005.
[56]  P. Kurzynowski, M. Borwinska, and J. Masajada, “Optical vortex sign determination using self-interference methods,” Optica Applicata, vol. 40, no. 1, pp. 165–175, 2010.
[57]  J. Masajada, A. Popio?ek, E. Fr?czek, and W. Fr?czek, “Vortex points localization problem in optical vortices interferometry,” Optics Communications, vol. 234, no. 1–6, pp. 23–28, 2004.
[58]  G. Budzyń, E. Fr?czek, W. Fr?czek, and J. Mroczka, “Influence of a laser beam's frequency stability on dislocation of vortex points in an optical vortex interferometer,” Applied Optics, vol. 45, no. 17, pp. 3982–3984, 2006.
[59]  A. Popio?ek-Masajada and W. Fr?czek, “Evaluation of phase shifting method for vortex localization in optical vortex interferometry,” Journal of Optics & Laser Technology, vol. 43, pp. 1219–1224, 2011.
[60]  J. Masajada, A. Popio?ek-Masajada, and M. Leniec, “Creation of vortex lattices by a wavefront division,” Optics Express, vol. 15, no. 8, pp. 5196–5207, 2007.
[61]  G. Ruben and D. M. Paganin, “Phase vortices from a Young's three-pinhole interferometer,” Physical Review E, vol. 75, no. 2, Article ID 066613, 2007.
[62]  D. P. Ghai, S. Vyas, P. Senthilkumaran, and R. S. Sirohi, “Vortex lattice generation using interferometric techniques based on lateral shearing,” Optics Communications, vol. 282, no. 14, pp. 2692–2698, 2009.
[63]  S. Vyas and P. Senthilkumaran, “Vortex array generation by interference of spherical waves,” Applied Optics, vol. 46, no. 32, pp. 7862–7867, 2007.
[64]  W. Wang, S. G. Hanson, Y. Miyamoto, and M. Takeda, “Experimental investigation of local properties and statistics of optical vortices in random wave fields,” Physical Review Letters, vol. 94, no. 10, Article ID 103902, 2005.
[65]  W. Wang, T. Yokozeki, R. Ishijima, M. Takeda, and S. G. Hanson, “Optical vortex metrology based on the core structures of phase singularities in Laguerre-Gauss transform of a speckle pattern,” Optics Express, vol. 14, no. 22, pp. 10195–10206, 2006.
[66]  W. Wang, N. Ishii, S. G. Hanson, Y. Miyamoto, and M. Takeda, “Phase singularities in analytic signal of white-light speckle pattern with application to micro-displacement measurement,” Optics Communications, vol. 248, no. 1–3, pp. 59–68, 2005.
[67]  W. Wang, T. Yokozeki, R. Ishijima et al., “Optical vortex metrology for nanometric speckle displacement measurement,” Optics Express, vol. 14, no. 1, pp. 120–127, 2006.
[68]  V. P. Aksenov and O. V. Tikhomirova, “Theory of singular-phase reconstruction for an optical speckle field in the turbulent atmosphere,” The Journal of the Optical Society of America A, vol. 19, no. 2, pp. 345–355, 2002.
[69]  V. P. Tychinsky, I. N. Masalov, V. L. Pankov, and D. V. Ublinsky, “Computerized phase microscope for investigation of submicron structures,” Optics Communications, vol. 74, no. 1-2, pp. 37–40, 1989.
[70]  V. P. Tychinsky, “On superresolution of phase objects,” Optics Communications, vol. 74, no. 1-2, pp. 41–45, 1989.
[71]  V. P. Tychinsky and C. H. F. Velzel, “Super-resolution in microscopy,” in Current Trends in Optics, chapter 18, Academic Press, New York, NY, USA, 1994.
[72]  C. Velzel and J. Masajada, “Superresolution phase image microscope,” Optica Applicata, vol. 29, no. 3, pp. 293–300, 1999.
[73]  B. Spektor, A. Normatov, and J. Shamir, “Experimental validation of 20nm sensitivity of Singular Beam Microscopy,” in Optical Measurement Systems for Industrial Inspection, vol. 6616 of Proceedings of SPIE, Munich, Germany, June 2007.
[74]  B. Spektor, A. Normatov, and J. Shamir, “Singular beam microscopy,” Applied Optics, vol. 47, no. 4, pp. A78–A87, 2008.
[75]  B. Spector, A. Normatov, and J. Shamir, “Singular beam scanning microscopy: preliminary experimental results,” Optical Engineering, vol. 49, no. 4, Article ID 048001, 2010.
[76]  J. Masajada, M. Leniec, E. Jankowska, H. Thienpont, H. Ottevaere, and V. Gomez, “Deep microstructure topography characterization with optical vortex interferometer,” Optics Express, vol. 16, no. 23, pp. 19179–19191, 2008.
[77]  J. Masajada, M. Leniec, S. Bczyńskidro, H. Thienpont, and B. Kress, “Micro-step localization using double charge optical vortex interferometer,” Optics Express, vol. 17, no. 18, pp. 16144–16159, 2009.
[78]  J. Masajada, M. Leniec, and I. Augustyniak, “Optical vortex scanning inside Gaussian beam,” Journal of Optics, vol. 13, Article ID 035714, 2011.
[79]  E. Fr?czek and G. Budzyn, “An analysis of an optical vortices interferometer with focused beam,” Optica Applicata, vol. 39, no. 1, pp. 91–99, 2009.
[80]  O. Bryngdahl, “Radial and Circular fringe interferograms,” The Journal of the Optical Society of America A, vol. 63, pp. 1098–1104, 1973.
[81]  O. Bryngdahl and W. H. Lee, “Shearing interferometry in polar coordinates,” The Journal of the Optical Society of America A, vol. 64, no. 12, pp. 1606–1615, 1974.
[82]  P. Senthilkumaran, “Optical phase singularities in detection of laser beam collimation,” Applied Optics, vol. 42, no. 31, pp. 6314–6320, 2003.
[83]  D. P. Ghai, P. Senthilkumaran, and R. S. Sirohi, “Single-slit diffraction of an optical beam with phase singularity,” Optics and Lasers in Engineering, vol. 47, no. 1, pp. 123–126, 2009.
[84]  S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral interferometry,” Optics Letters, vol. 30, no. 15, pp. 1953–1955, 2005.
[85]  F. S. Roux, “Diffractive lens with a null in the center of its focal point,” Applied Optics, vol. 32, no. 22, pp. 4191–4192, 1993.
[86]  N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer generated hologram,” Optics Letters, vol. 17, pp. 221–223, 1992.
[87]  A. A. Tovar, “Production and propagation of cylindrically polarized Laguerre-Gaussian laser beams,” The Journal of the Optical Society of America A, vol. 15, no. 10, pp. 2705–2711, 1998.
[88]  D. G. Hall, “Vector-beam solutions of Maxwell's wave equation,” Optics Letters, vol. 21, no. 1, pp. 9–11, 1996.
[89]  C. F. Li, “Integral transformation solution of free-space cylindrical vector beams and prediction of modified Bessel-Gaussian vector beams,” Optics Letters, vol. 32, no. 24, pp. 3543–3545, 2007.
[90]  W. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Applied Optics, vol. 29, pp. 2234–2239, 1990.
[91]  S. C. Tidwell, G. H. Kim, and W. D. Kimura, “Efficient radially polarized laser beam generation with a double interferometer,” Applied Optics, vol. 32, no. 27, pp. 5222–5229, 1993.
[92]  N. Passilly, R. de Saint Denis, K. A?t-Ameur, F. Treussart, R. Hierle, and J. F. Roch, “Simple interferometric technique for generation of a radially polarized light beam,” The Journal of the Optical Society of America A, vol. 22, no. 5, pp. 984–991, 2005.
[93]  P. H. Jones, M. Rashid, M. Makita, and O. M. Maragò, “Sagnac interferometer method for synthesis of fractional polarization vortices,” Optics Letters, vol. 34, no. 17, pp. 2560–2562, 2009.
[94]  R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Applied Physics Letters, vol. 77, no. 21, pp. 3322–3324, 2000.
[95]  Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Advances in Optics and Photonics, vol. 1, no. 1, pp. 1–57, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133