OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
长时相干效应与分形布朗运动
DOI: 10.11858/gywlxb.1991.01.008, PP. 52-56
Keywords: 分形,布朗及分形布朗运动,扩散,Fokker-Planck方程
Abstract:
我们研究了阻尼布朗粒子,在具有幂律长时相干C(t)~t-β(0<β<1,1<β<2)的无规涨落力作用下的运动情况。我们发现它是作分形布朗运动,而不是作普通的布朗运动,而且,找出了分形布朗运动的有效Fokker-Planck方程,以及相应的精确解。于是第一次把长时相干效应和分形布朗运动建立了定量的联系。
References
[1] | Brown R. Phil Mag, 4(1828): 162.
|
[2] | Einstein A. Investigations on the Theory of the Brownian Movement. Dover, New York, 1956.
|
[3] | Mandelbrot B B, Van Ness J W. SIAM Review, 1968, 10: 422.
|
[4] | Adler B J, Wainwright T E. Phys Rev Lett, 1967, 18: 988; Phys Rev A, 1970, 1: 18.
|
[5] | Reichl L E. Phys Rev A, 1981, 24: 609.
|
[6] | Aharony A. Scaling Phenomena in Disordered System. Edited by R Pynn, A Skjeltorp. Plenum Press, 1985: 289.
|
[7] | Fox R F. Phys Rev A, 1986, 33: 467; Phys Rev A, 1986, 34: 4526.
|
[8] | Wang K G, et al. Functional-Calculus Approach to Motion of a Damped Brownian Particle Evolving in a Long Time Correlation Fluctuating Force.
|
[9] | Mandelbrot B B. The Fractal Geometry of Nature. New York: Freeman, 1982.
|
[10] | Feder J. Fractals. New York and London: Plenum Press, 1988.
|
[11] | Bouchaud J P, et al. Phys Rev Lett, 1990, 64: 2503.
|
[12] | Voss R. Physica D, 1989, 38: 362.
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|