Urtiew P A, Grover R. Temperature Deposition Caused by Shock Interaction with Material Interfaces [J]. J Appl Phys, 1974, 45: 140.
[2]
Grover R, Urtiew P A. Thermal Relaxation at Interfaces Following Shock Compression [J]. J Appl Phys, 1974, 45: 146.
[3]
Williams Q, Bass J D, Svendsen B, et al. The Temperature of Shock Compressed Iron to 250 Gigapascals: A Constrain on the Temperature at Earth's Core [J]. Science, 1987, 236: 181.
[4]
Tang Wenhuijing Fuqian, Hu Jinbiao, et al. New Method for Determining the Shock Temperature of Metals [J]. Chin Phys Lett, 1994, 11(9): 569.
[5]
卫锦先主编. 航天材料热物性学 [M]. 北京: 宇航出版社, 1997.
[6]
王正行编著. 近代物理学 [M]. 北京: 北京大学出版社, 1996.
[7]
Mott N F, Ones H. The Theory of the Properties of Metals and Alloys [M]. New York: Dover Publications Inc, 1958.
[8]
Tan H, Ahrens T J. Shock Temperature Measurements for Metals [J]. High Pressure Research, 1990, 2: 159-182.
[9]
Keeler R N, Royce E B. Electrical Conductivity of Condensed Media at High Pressures. In: Caldivola P, Knoepfel H, eds. Physics of High Energy Density, Proceedings International School Phys. Enrico Femi XL VIII. New York, N. Y.: American Press, 1971: 418.
[10]
汤文辉. 高压物理学报, 1994, 8(2): 125-132.
[11]
Gu Chenggang, Tan Hua, Jing Fuqian, et al. Discussion on the Thermal Relaxation and Finite Transition Rate Effects at Shocked Metal/Window Interface. In: Zhang Guanren, Huang Shihui, Tang Yizhi, eds. Proceeding of the 2nd International Symposium on Intense Dynamic Loading and Its Effects. Chengdu: Sichuan University Press, 1992: 298.