全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

钽在冲击载荷下的动态力学特性

DOI: 10.11858/gywlxb.2001.04.005, PP. 265-270

Keywords: ,动态断裂,层裂强度,冲击波

Full-Text   Cite this paper   Add to My Lib

Abstract:

在对称碰撞实验中,用VISAR测试系统记录了自由面粒子速度剖面。结合材料常压弹性纵波声速的测量,利用冲击加载的双波结构,测量了钽在30GPa以内的冲击波速度,给出了线性相关性非常好的D-up关系,并与高压下的测量结果作了比较。同时对由自由面粒子速度剖面来计算层裂强度的模型进行了讨论,发现模型差异对钽的层裂强度的影响超过30%。

References

[1]  Kock W, Paschen P. Tantalum Processing Properties and Application [J]. J Metals, 1989, 41: 33.
[2]  Clark J B, Garrett R K, Jr Jungling T L, et al. Influence of Initial Ingot Breakdown on the Microstructural and Textural Development of High-Purity Tantalum [J]. Metall Trans A, 1991, 22A: 2959.
[3]  Zerilli F J, Armstrong R W. Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations [J]. J Appl Phys, 1987, 61(5): 1816.
[4]  Zerilli F J, Armstrong R W. Description of Tantalum Deformation Behavior by Dislocation Mechanics Based Constitutive Relations [J]. J Appl Phys, 1990, 68(4): 1580.
[5]  Meyers M A, Chen Y J, Marquis F D S, et al. High-Strain, High-Strain-Rate Behavior of Tantalum [J]. Metall Trans A, 1995, 26A: 2493.
[6]  Chen S R, Gray G T, Bingert S R. Mechanical Properties and Constitutive Relations for Tantalum and Tantalum Alloys under High-Rate Deformation [R]. LA-UR-96-0602, 1996.
[7]  Thissell W R, Zurek A K, Rivas J M, et al. Damage Evolution and Clustering in Shock Loaded Tantalum [R]. LA- UR-98-3441, 1998.
[8]  Gourdin W H. Constitutive Properties of Copper and Tantalum at High Rates of Tensile Strain: Expanding Ring Results [R]. UCRL-98812, 1998.
[9]  Tonks D L, Hixson R S, Zurek A K, et al. Spallation Modelling in Tantalum [R]. LA-UR-97-3782, 1997.
[10]  Chen S R, Gray G T. Constitutive Behavior of Tantalum and Tantalum-Tungsten Alloys [J]. Metall Trans A, 1996, 27A: 2994.
[11]  Thissell W R, Zurek A K, Tonks D L, et al. Experimental Quantitative Damage Measurements and Void Growth Model Predictions in the Spallation of Tantalum [A]. Furnish M D, Chhabildas L C, Hixson R S. Shock Compression of Condensed Matter-1999 [C]. New York: American Institute of Physics, 2000: 451.
[12]  Duprey K E, Clifton R J. Dynamic Constitutive Response of Tantalum at High Strain Rate [A]. Schmidt, Dandekar, Forbes. Shock Compression of Condensed Matter-1997 [C]. New York: American Institute of Physics, 1998: 475.
[13]  Duprey K E, Clifton R J. Pressure-Shear Response of Thin Tantalum Foils [A]. Furnish M D, Chhabildas L C, Hixson R S. Shock Compression of Condensed Matter-1999 [C]. New York: American Institute of Physics, 2000: 447.
[14]  Llorca L, Juanicotena A, Dambrun C. Modeling of the High Strain and High Strain Rate Behavior of Tantalum-Application to the Dynamic Expansion of a Spherical Shell [A]. Furnish M D, Chhabildas L C, Hixson R S. Shock Compression of Condensed Matter-1999 [C]. New York: American Institute of Physics, 2000: 455.
[15]  彭建祥, 李大红. 温度与应变率对钽流动应力的影响 [J]. 高压物理学报, 2001, 15(2): 146-150.
[16]  王礼立. 爆炸与冲击载荷下结构和材料动态响应研究的新进展 [J]. 爆炸与冲击, 2001, 21(2): 81.
[17]  张万甲?钽-钨合金动态响应特性研究 [J]. 爆炸与冲击, 2000, 20(1): 45.
[18]  卡涅尔Γ H, 拉扎列诺夫C B, 乌特金Л B, 等. 凝聚介质中的冲击波现象 [M]. 韩均万译. 四川绵阳: 中物院流体物理研究所, 1998: 183-185.
[19]  Kanel G I, Razorenov S V, Utkin A V. Chap. l [A]. Davison Lee, Grady D E, Shahinpoor M. High-Pressure Shock Compression of SolidsⅡ [C]. New York: Springer, 1994.
[20]  Grady D E. Steady-Wave Risetime and Spall Measurements on Uranium [R]. SAND-85-0233C, 1985.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133