全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高压下闪锌矿InN光电性质的密度泛函研究

DOI: 10.11858/gywlxb.2012.06.009, PP. 653-660

Keywords: 闪锌矿InN,光电性质,密度泛函理论,高压

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用密度泛函理论,计算了闪锌矿型InN在压力下的结构、力学性质和光学性质,结果显示,随着压强的增大晶格常数减小。给出了零压下C11、C12、B、Cs、C44的值及至70GPa压力下弹性常数随压强的变化关系。结果表明,C11、C12、B随压强增大而增大,Cs、C44随压强增大而减小,计算结果与现有实验和理论结果符合较好。在价带区,InN的分态密度(PDOS)有两个带,且在费米面附近密度很小,显示其倾向于形成稳定结构并且导电性较差。对闪锌矿型InN在高压下的光学性质研究发现,导带电子向高能方向偏移,而价带电子向低能方向偏移,结果导致能带间隙增大,光吸收谱在压力的作用发生了“蓝移”。研究结果对认识高压下闪锌矿型InN的结构、电学及光学性质具有重要意义。

References

[1]  Carrier P, Wei S H. Theoretical study of the band-gap anomaly of InN [J]. J App Phys, 2005, 97(3): 033707-033711.
[2]  Inushima T, Shiraishi T, Davydov V Y. Phonon structure of InN grown by atomic layer epitaxy [J]. Solid State Commun, 1999, 110(9): 491-495.
[3]  Pugh S K, Dugdale D J, Brand S, et al. Electronic structure calculations on nitride semiconductors [J]. Semicondoc Sci Technol, 1999, 14(1): 23-28.
[4]  Bouarissa N. Electronic structure and lattice properties of zinc-blende InN under high pressure [J]. Eur Phys J B, 2002, 26(2): 153-158.
[5]  Tansley T L, Egan R J, Horrigan E C. Properties of sputtered nitride semiconductors [J]. Thin Solid Films, 1988, 164: 441-448.
[6]  Walukiewicz W, Li S X, Wu J, et al. Optical properties and electronic structure of InN and In-rich group Ⅲ-nitride alloys [J]. J Cryst Growth, 2004, 269(1): 119-127.
[7]  Wu J, Walukiewicz W, Yu K M, et al. Unusual properties of fundamental band gap of InN [J]. Appl Phys Lett, 2002, 80(21): 3967-3969.
[8]  Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method [J]. Phys Rev Lett, 1980, 45(7): 566-569.
[9]  Saib S, Bouarissa N. Ab initio lattice dynamics and piezoelectric properties of MgS and MgSe alkaline earth chalcogenides [J]. Eur Phys J B, 2010, 73(2), 185-193.
[10]  Kanoun M B, Merad A E, Merad G, et al. Prediction study of elastic properties under pressure effect for zincblende BN, AlN, GaN and InN [J]. Solid-State Electronics, 2004, 48(9): 1601-1606.
[11]  Gorczyca I, Dmowski L, Plesiewicz J, et al. Band structure and effective mass of InN under pressure [J]. Phys Status Solidi B, 2008, 245: 887-889.
[12]  Li S X, Wu J, Haller E E, et al. Hydrostatic pressure dependence of the fundamental bandgap of InN and In-rich group Ⅲ nitride alloys [J]. Appl Phys Lett, 2003, 83(24): 4963-4966.
[13]  Payne M C, Teter M P, Allan D C, et al. Iterative minimization techniques for ab initio total energy calculations C molecular dynamics and conjugate gradients [J]. Rev Mod Phys, 1992, 64(4): 1045-1097.
[14]  Segall M D, Lindan Philip J D, Probert M J, et al. First-principles simulation: Ideas, illustrations and the CASTEP code [J]. J Phys: Condens Matter, 2002, 14(11): 2717-2744.
[15]  Clark S J, Segall M D, Pickard C J, et al. First principles methods using CASTEP [J]. Zeitschrift fuer Kristallographie, 2005, 220: 567-571.
[16]  Zheng G, Clark S J, Brand S, et al. First-principles studies of the structural and electronic properties of the polymer poly-phenylene vinylene [J]. J Phys: Condens Matter, 2004, 16(47): 8609-8620.
[17]  Zheng G, Clark S J, Tulip P, et al. Ab-initio dynamical study of poly-para-phenylene vinylene [J]. J Chem Phys, 2005, 123(2): 024904-024911.
[18]  Zheng G, Clark S J, Brand S, et al. Lattics dynamics of polymer polyaniline and poly(p-pyridyl-vinyline): First-principles determination [J]. Phys Rev B, 2006, 74(16): 165210-165217.
[19]  He K H, Zheng G, Kirtman B, et al. First principles study on the electronic structure and effect of vanadium doping of BN nanowires [J]. Solid State Commun, 2010, 150(15-16): 701-705.
[20]  Chen Q L, Tang C Q, Zheng G. First-principles study of TiO2 anatase(101) surfaces doped with N [J]. Physica B, 2009, 404(8-11): 1074-1077.
[21]  Vanderbilt D. Soft self-consistent pseudopotentials in generalized eigenvalue formalism [J]. Phys Rev B, 1990, 41(11): 7892-7895.
[22]  Perdew P J, Wang Y. Pair-distribution function and coupling-constant average for the spin-polarized electron gas [J]. Phys Rev B, 1992, 46(20): 12947-12954.
[23]  Feynman R P. Forces in molecules [J]. Phys Rev, 1939, 56: 340-343.
[24]  Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J]. Phys Rev B, 1976, 13(12): 5188-5192.
[25]  Kim K, Lambrecht W R L, Seagall B. Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN [J]. Phys Rev B, 1996, 53(24): 16310-16326.
[26]  Zhang S, Chen N X. Lattice inversion for interionic pair potentials [J]. J Chem Phys, 2003, 118(9): 3974-3982.
[27]  Sherwin M, Drummond T J. Gallium nitride (GaN) elastic moduli [J]. J Appl Phys, 1991, 69(9): 8423-8427.
[28]  Yip S, Li J, Tang M, et al. Mechanistic aspects and atomic-level consequences of elastic instabilities in homogeneous crystals [J]. Mater Sci Eng A, 2001, 317: 236-240.
[29]  Morkoc H. Nitride Semiconductors and Devices [M]. New York: Springer, 1999.
[30]  Morkoc H, Mohammad S N. High-luminosity blue and blue-green gallium nitride light-emitting diodes [J]. Science, 1995, 267(5194): 51-55.
[31]  Sobolev V V, Zlobina M A. Optical spectra and electronic structure of indium nitride [J]. Semiconductors, 1990, 33(4): 385-390.
[32]  Sin'ko G V, Smirnov N A. Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure [J]. J Phys: Condens Matter, 2002, 14(29): 6989-7005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133