Rival M, Mandeville J C. Modeling of ejecta produced upon hypervelocity impacts [J]. Space Debris, 1999, 1: 45-57.
[2]
Siguier J M, Mandeville J C. Test procedures to evaluate spacecraft materials ejecta upon hypervelocity impact [J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2007, 221(6): 969-974.
[3]
Mandeville J C. Characterisation of ejecta from HVI on spacecraft outer surfaces [R]. Germany: The European Space Operations Centre, 2009.
[4]
Ma Z T. Smoothed particle hydrodynamics method and behavior of aluminum foams under hypervelocity impact [D]. Harbin: Harbin Institute of Technology, 2008: 82-100. (in Chinese)
Guan G S, Pang B J, Ha Y, et al. Damage of Al-whipple shield rear wall caused by hypervelocity impact of Al-spheres [J]. Acta Armamentarii, 2007, 28(1): 94-100. (in Chinese)
Nakamura A M, Fujiwara A, Kadono T. Velocity of finer fragments from impact [J]. Planet Space Sci, 1994, 42(12): 1043-1052.
[9]
Yamamoto S, Nakamura A M. Velocity measurements of impact ejecta from regolith targets [J]. Icarus, 1997, 128: 160-170.
[10]
Piekutowski A J. Formation and description of debris cloud produced by hypervelocity impact, NASA-CR-4707 [R]. USA: NASA Johnson Space Center, 1996.
[11]
Walsh J M, Rice M H, McQueen R G, et al. Shock-wave compression of twenty-seven metals, equation of state of metals [J]. Phys Rev, 1957, 108(2): 196-216.
[12]
Johnson G R, Cook W H. A constitutive model and data for materials subjected to large strains, high strain rates and high temperatures [A]//Proceeding of the Seventh International Symposium on Ballistics [C]. The Hague, The Netherlands, 1983: 541-547.
[13]
Steinberg D J, Cochran S G, Guinan M W. A constitutive model for metals applicable at high strain rate [J]. J Appl Phys, 1980, 51(3): 1498.
[14]
Christiansen E L. Shielding sizing and response equations, NASA-TM-105527 [R]. USA: NASA Johnson Space Center, 1991.