全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

铜在强冲击载荷下的细观力学行为数值模拟

DOI: 10.11858/gywlxb.2013.03.022, PP. 461-467

Keywords: 冲击动力学,晶粒细化,热力学行为,Voronio

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用Voronoi方法建立了多晶铜的细观几何模型,能够反映晶粒几何形状和晶界的不规则性,基于晶界固连-失效模型反映晶界结合特征,借助LS-DYNA非线性有限元程序,从细观角度对爆炸冲击载荷作用下铜的晶粒变形、热沉积行为进行了数值模拟。配合高压熔点理论和晶粒生长理论,从热力学角度分析了晶粒细化的可行性,结合实验结果对晶粒细化进行了定性验证。研究结果表明,通过构建的数值模拟方法,对多晶铜冲击压缩下的晶粒与晶界的变形机制、热沉积进行研究是可行的;晶界处易于形成应力集中现象,塑性变形和由此引起的温升大于晶粒内部;由宏观绝热压缩和由细观畸变引起的整体温升不会引起晶粒的长大。

References

[1]  Zhang L D. Nanomaterials and nanotechnology in China: Current status of applicationand opportunities for commercialization [J]. Materials Review, 2001, 15(7): 2-5. (in Chinese)
[2]  张立德. 我国纳米材料技术应用的现状和产业化的机遇 [J]. 材料导报, 2001, 15(7): 2-5.
[3]  Cai B, Kong Q P, Lu L, et al. Low temperature creep of nanocrystalline pure copper [J]. Mater Sci Eng A, 2000, 286(1): 188-192.
[4]  Guduru R K, Murty K L, Youssef K M, et al. Mechanical behavior of nanocrystalline copper [J]. Mater Sci Eng A, 2007, 463(1-2): 14-21.
[5]  Zheng C, Zhang Y W. Atomistic simulations of mechanical deformation of high-angle and low-angle nanocrystalline copper at room temperature [J]. Mater Sci Eng A, 2007, 423(1-2): 97-101.
[6]  Wang J X, Zhou N, Li B M, et al. Fabrication of nanocrystalline copper by explosive loading and its dynamic mechanics properties [J]. Combustion, Explosion and Shock Waves, 2011, 47(3): 369-373.
[7]  Wang J X, Zhou N. Study on the grain size distribution rule and influence factors of nanocrystalline copper fabricated under explosive loading [J]. Chinese Journal of High Pressure Physics, 2011, 25(6): 501-507. (in Chinese)
[8]  王金相, 周楠. 爆炸载荷下纳米晶铜晶粒度分布及影响因素研究 [J]. 高压物理学报, 2011, 25(6): 501-507.
[9]  Li J, Weng G J. A secant-viscosity composite model for the strain-rate sensitivity of nanocrystalline materials [J]. Int J Plastic, 2007, 23(12): 2115-2133.
[10]  Xiao G H, Tao N R, Lu K. Effects of strain, strain rate and temperature on deformation twinning in a Cu-Zn alloy [J]. Scripta Mater, 2008, 59(9): 975-978.
[11]  Wang H T, Yang W. Mechanical behavior of nanocrystalline metals [J]. Advances in Mechanics, 2004, 34(3): 314-326. (in Chinese)
[12]  王宏涛, 杨卫. 纳米晶金属的力学行为 [J]. 力学进展, 2004, 34(3): 314-326.
[13]  Benkasse S, Capolungo L. Mechanical properties and multi-scale modeling of nanocrystalline materials [J]. Acta Mater, 2007(55): 3563-3572.
[14]  Wang Y M, Wang K, Pan D, et al. Microsample tensile testing of nanocrystallinne cooper [J]. Scripta Mater, 2003, 48(12): 1581-1586.
[15]  Kang J X, Wang Z H, Zhao L M. Studay on the quasi-static mechanical proerties of cellular metal using voronoi tessellation [J]. Engineering Mechanics, 2011, 28(7): 203-209. (in Chinese)
[16]  康锦霞, 王志华, 赵隆茂. 采用Voronoi模型研究多孔金属材料准静态力学特性 [J]. 工程力学, 2011, 28(7): 203-209.
[17]  Zhang Q M, Liu Y, Huang F L. Dynamic Behavior of Materials [M]. Beijing: National Defense Industry Press, 2006: 165-170. (in Chinese)
[18]  张庆明, 刘彦, 黄风雷. 材料的动力学行为 [M]. 北京: 国防工业出版社, 2006: 165-170.
[19]  Wang H T, Yang W, Ngan A H W. Enhanced diffusivity by triple junction networks [J]. Scripta Mater, 2004, 52(1): 69-73.
[20]  Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Eng Fract Mech, 1985, 21(1): 31-48.
[21]  Tang W H, Zhang R Q. Introduction to Theory and Computation of Equations of State [M]. 2nd ed. Beijing: Higher Education Press, 2008: 134-136. (in Chinese)
[22]  汤文辉, 张若棋. 物态方程理论及计算概论 [M]. 第2版. 北京: 高等教育出版社, 2008: 134-136.
[23]  Andrievski R A. Review stability of nanostructured materials [J]. J Mater Sci, 2003, 38(7): 1367-1375.
[24]  Murty B S, Datta M K, Pabi S K. Structure and thermal stability of nanocrystalline materials [J]. Sadhana, 2003, 28(1-2): 23-45.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133