全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

典型双原子分子晶体的高压解离和单原子相

DOI: 10.11858/gywlxb.2013.03.001, PP. 313-324

Keywords: 高压,金属氢,分子晶体,高压解离机制,结构相变,晶体结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

高压可以有效地改变材料内部原子间的相互作用(如电子轨道重叠、化学成键、电荷分布等),进而改变材料的晶体结构、力学、热学、光学、电学等宏观物理性质。一百多年来,实验压力极限和高压理论方法的不断突破推动着高压学科的快速发展。在高压科学中,典型非极性双原子分子晶体的高压解离研究无疑是挑战高压极限的热点问题,也是20世纪高压物理重点解决的关键问题。针对元素周期表中质量最轻的H2、O2和N23种典型双原子共价非极性分子晶体的高压解离行为进行讨论,具体分析了解离产生的物理机制,评述了分子解离后形成的单原子相。

References

[1]  Wang Y, Lv J, Zhu L, et al. CALYPSO: A method for crystal structure prediction [J]. Comput Phys Commun, 2012, 183(10): 2063-2070.
[2]  Lv J, Wang Y, Zhu L, et al. Predicted novel high-pressure phases of lithium [J]. Phys Rev Lett, 2011, 106(1): 015503.
[3]  Li Q, Zhou D, Zheng W, et al. Global structural optimization of tungsten borides [J]. Phys Rev Lett, 2013, 110(13): 136403.
[4]  Wang X, Wang Y, Miao M, et al. Cagelike diamondoid nitrogen at high pressures [J]. Phys Rev Lett, 2012, 109(17): 175502.
[5]  〖JP4〗Zhao Z, Xu B, Zhou X F, et al. Novel superhard carbon: C-centered orthorhombic C8 [J]. Phys Rev Lett, 2011, 107(21): 215502.
[6]  Zhao Z, Xu B, Wang L M, et al. Three dimensional carbon-nanotube polymers [J]. ACS Nano, 2011, 5(9): 7226-7234.
[7]  Martonak R, Donadio D, Oganov A R, et al. Crystal structure transformations in SiO2 from classical and ab initio metadynamics [J]. Nature Mater, 2006, 5(8): 623-626.
[8]  Liu H, Zhu L, Cui W, et al. Room-temperature structures of solid hydrogen at high pressures [J]. J Chem Phys, 2012, 137(7): 074501.
[9]  Liu H, Ma Y. Proton or deuteron transfer in phase Ⅳ of solid hydrogen and deuterium [J]. Phys Rev Lett, 2013, 110(2): 025903.
[10]  Tonkov E Y, Ponyatovsky E G. Phase Transformations of Elements under High Pressure [M]. Boca Raton, FL: CRC Press, 2005.
[11]  Bini R, Ulivi L, Kreutz J, et al. High-pressure phases of solid nitrogen by Raman and infrared spectroscopy [J]. J Chem Phys, 2000, 112(19): 8522-8529.
[12]  Eremets M I, Gavriliuk A G, Serebryanaya N R, et al. Structural transformation of molecular nitrogen to a single-bonded atomic state at high pressures [J]. J Chem Phys, 2004, 121(22): 11296.
[13]  Mailhiot C, Yang L H, McMahan A K. Polymeric nitrogen [J]. Phys Rev B, 1992, 46(22): 14419.
[14]  Martin R M, Needs R J. Theoretical study of the molecular-to-nonmolecular transformation of nitrogen at high pressures [J]. Phys Rev B, 1986, 34(8): 5082-5092.
[15]  Lewis S P, Cohen M L. High-pressure atomic phases of solid nitrogen [J]. Phys Rev B, 1992, 46(17): 11117-11120.
[16]  Mattson W D, Sanchez-Portal D, Chiesa S, et al. Prediction of new phases of nitrogen at high pressure from first-principles simulations [J]. Phys Rev Lett, 2004, 93(12): 125501.
[17]  Yao Y, Tse J S, Tanaka K. Metastable high-pressure single-bonded phases of nitrogen predicted via genetic algorithm [J]. Phys Rev B, 2008, 77(5): 052103.
[18]  Ma Y, Oganov A R, Li Z, et al. Novel high pressure structures of polymeric nitrogen [J]. Phys Rev Lett, 2009, 102(6): 065501.
[19]  Meier R J, Helmholdt R B. Neutron-diffraction study of alpha- and beta-oxygen [J]. Phys Rev B, 1984, 29(3): 1387.
[20]  English C A, Venables J A. The structure of the diatomic molecular solids [J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1974, 340(1620): 57-80.
[21]  Horl E M. Structure and structure imperfections of solid-oxygen [J]. Acta Crystallographica, 1962, 15(9): 845-850.
[22]  LeSar R, Etters R D. Character of the alpha-beta phase transition in solid oxygen [J]. Phys Rev B, 1988, 37(10): 5364-5370.
[23]  Gorelli F A, Santoro M, Ulivi L, et al. Crystal structure of solid oxygen at high pressure and low temperature [J]. Phys Rev B, 2002, 65(17): 172106.
[24]  〖JP4〗Goncharenko I N. Evidence for a magnetic collapse in the epsilon phase of solid oxygen [J]. Phys Rev Lett, 2005, 94(20): 205701.
[25]  Neaton J B, Ashcroft N W. Low-energy linear structures in dense oxygen: Implications for the epsilon phase [J]. Phys Rev Lett, 2002, 88(20): 205503.
[26]  Serra S, Chiarotti G, Scandolo S, et al. Pressure-induced magnetic collapse and metallization of molecular oxygen: The zeta-O2 phase [J]. Phys Rev Lett, 1998, 80(23): 5160.
[27]  Schiferl D, Cromer D T, Mills R L. Structure of O2 at 5. 5 GPa and 299 K [J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1981, 37(7): 1329-1332.
[28]  D'Amour H, Holzapfel W B, Nicol M. Solid oxygen near 298 K. The structure of beta-oxygen and identification of a new epsilon phase [J]. J Phys Chem, 1981, 85(2): 130-131.
[29]  Schiferl D, Cromer D T, Schwalbe L A, et al. Structure of 'orange' 18O2 at 9. 6 GPa and 297 K [J]. Acta Crystallographica Section B: Structural Science, 1983, 39(2): 153-157.
[30]  Fujihisa H, Akahama Y, Kawamura H, et al. O8 cluster structure of the epsilon phase of solid oxygen [J]. Phys Rev Lett, 2006, 97(8): 085503.
[31]  Desgreniers S, Vohra Y K, Ruoff A L. Optical response of very high density solid oxygen to 132 GPa [J]. J Phys Chem, 1990, 94(3): 1117-1122.
[32]  Akahama Y, Kawamura H, Husermann D, et al. New high-pressure structural transition of oxygen at 96 GPa associated with metallization in a molecular solid [J]. Phys Rev Lett, 1995, 74(23): 4690.
[33]  Shimizu K, Suhara K, Ikumo M, et al. Superconductivity in oxygen [J]. Nature, 1998, 393(6687): 767-769.
[34]  Goncharov A F, Gregoryanz E, Hemley R J, et al. Molecular character of the metallic high-pressure phase of oxygen [J]. Phys Rev B, 2003, 68(10): 100102.
[35]  Weck G, Loubeyre P, LeToullec R. Observation of structural transformations in metal oxygen [J]. Phys Rev Lett, 2002, 88(3): 035504.
[36]  Weck G, Desgreniers S, Loubeyre P, et al. Single-crystal structural characterization of the metallic phase of oxygen [J]. Phys Rev Lett, 2009, 102(25): 255503.
[37]  Ashcroft N W. Metallic hydrogen: A high-temperature superconductor [J]. Phys Rev Lett, 1968, 21(26): 1748-1749.
[38]  Zhang L J, Niu Y L, Cui T, et al. The broken-symmetry phase of solid hydrogen: Evidence from infrared and Raman active vibrons [J]. J Phys: Condensed Matter, 2007, 19(42): 425237.
[39]  Pickard C J, Needs R J. Structure of phase Ⅲ of solid hydrogen [J]. Nature Physics, 2007, 3(7): 473-476.
[40]  Wang Y, Lv J, Zhu L, et al. Crystal structure prediction via particle-swarm optimization [J]. Phys Rev B, 2010, 82(9): 094116.
[41]  Wang Y, Liu H, Lv J, et al. High pressure partially ionic phase of water ice [J]. Nature Communications, 2011, 2(12): 563.
[42]  Zhu L, Wang H, Wang Y, et al. Substitutional alloy of Bi and Te at high pressure [J]. Phys Rev Lett, 2011, 106(14): 145501.
[43]  Zhu L, Wang Z, Wang Y, et al. Spiral chain O4 form of dense oxygen [J]. PNAS, 2012, 109(3): 751-753.
[44]  Li P, Gao G, Wang Y, et al. Crystal structures and exotic behavior of magnesium under pressure [J]. J Phys Chem C, 2010, 114(49): 21745.
[45]  Liu H, Wang H, Ma Y. Quasi-molecular and atomic phases of dense solid hydrogen [J]. J Phys Chem C, 2012, 116(16): 9221-9226. 〗
[46]  Wang H, John S T, Tanaka K, et al. Superconductive sodalite-like clathrate calcium hydride at high pressures [J]. PNAS, 2012, 109(17): 6463-6466.
[47]  Peng F, Miao M, Wang H, et al. Predicted lithium-boron compounds under high pressure [J]. J Am Chem Soc, 2012, 134(45): 18599-18605.
[48]  Zhou D, Li Q, Ma Y, et al. Unraveling convoluted structural transitions in SnTe at high pressure [J]. J Phys Chem C, 2013, 117(10): 5352-5357.
[49]  Zhao Z, Tian F, Dong X, et al. Tetragonal allotrope of group 14 elements [J]. J Am Chem Soc, 2012, 134(30): 12362-12365.
[50]  Li Q, Liu H, Zhou D, et al. A novel low compressible and superhard carbon nitride: Body-centered tetragonal CN2 [J]. Phys Chem Chem Phys, 2012, 14(37): 13081-13087.
[51]  Zhang X, Wang Y, Ma Y. High pressure structures of 111-type iron-based superconductors predicted from first-principles [J]. Phys Chem Chem Phys, 2012, 14(43): 15029-15035.
[52]  Luo X, Liu L M, Hu Z, et al. Two-dimensional superlattice: Modulation of band gaps in graphene-based monolayer carbon superlattices [J]. J Phys Chem Lett, 2012, 3(22): 3373-3378.
[53]  〖JP4〗Gao G, Wang H, Zhu L, et al. Pressure-induced formation of noble metal hydrides [J]. J Phys Chem C, 2012, 116(2): 1995-2000.
[54]  Gao G, Wang H, Bergara A, et al. Metallic and superconducting gallane under high pressure [J]. Phys Rev B, 2011, 84(6): 064118.
[55]  Luo X, Yang J, Liu H, et al. Predicting two-dimensional boron-carbon compounds by the global optimization method [J]. J Am Chem Soc, 2011, 133(40): 16285-16290.
[56]  Wang Y, Miao M, Lv J, et al. An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm [J]. J Chem Phys, 2012, 137(22): 224108.
[57]  〖JP4〗Zhang X, Wang Y, Lv J, et al. First-principles structural design of superhard materials [J]. J Chem Phys, 2013, 138(11): 114101.
[58]  Hazen R M, Mao H K, Finger L W, et al. Single-crystal X-ray diffraction of n-H2 at high pressure [J]. Phys Rev B, 1987, 36(7): 3944-3947.
[59]  Silvera I F, Wijngaarden R J. New low-temperature phase of molecular deuterium at ultrahigh pressure [J]. Phys Rev Lett, 1981, 47(1): 39-42.
[60]  Loubeyre P, LeToullec R, Hausermann D, et al. X-ray diffraction and equation of state of hydrogen at megabar pressures [J]. Nature, 1996, 383(6602): 702-704.
[61]  Mao H K, Hemley R J. Ultrahigh-pressure transitions in solid hydrogen [J]. Rev Mod Phys, 1994, 66(2): 671-692.
[62]  Akahama Y, Kawamura H, Hirao N, et al. Raman scattering and X-ray diffraction experiments for phase Ⅲ of solid hydrogen [J]. J Phys: Conf Ser, 2010, 215(1): 012056.
[63]  Akahama Y, Nishimura M, Kawamura H, et al. Evidence from X-ray diffraction of orientational ordering in phase Ⅲ of solid hydrogen at pressures up to 183 GPa [J]. Phys Rev B, 2010, 82(6): 060101.
[64]  Lorenzana H E, Silvera I F, Goettel K A. Evidence for a structural phase transition in solid hydrogen at megabar pressures [J]. Phys Rev Lett, 1989, 63(19): 2080-2083.
[65]  Mao H K, Hemley R J. Optical studies of hydrogen above 200 gigapascals: Evidence for metallization by band overlap [J]. Science, 1989, 244(19): 1462-1465.
[66]  Eggert J H, Moshary F, Evans W J, et al. Absorption and reflectance in hydrogen up to 230 GPa: Implications for metallization [J]. Phys Rev Lett, 1991, 66(2): 193-196.
[67]  Hanfland M, Hemley R J, Mao H K. Optical absorption measurements of hydrogen at megabar pressures [J]. Phys Rev B, 1991, 43(10): 8767-8770.
[68]  Kitamura H, Tsuneyuki S, Ogitsu T, et al. Quantum distribution of protons in solid molecular hydrogen at megabar pressures [J]. Nature, 2000, 404(6775): 259-262.
[69]  Kohanoff J, Scandolo S, Chiarotti G L, et al. Solid molecular hydrogen: The broken symmetry phase [J]. Phys Rev Lett, 1997, 78(14): 2783-2786.
[70]  Nagao K, Nagara H. Theoretical study of Raman and infrared active vibrational modes in highly compressed solid hydrogen [J]. Phys Rev Lett, 1998, 80(3): 548-551.
[71]  Nagao K, Takezawa T, Nagara H. Ab initio calculation of optical-mode frequencies in compressed solid hydrogen [J]. Phys Rev B, 1999, 59(21): 13741-13753.
[72]  Stdele M, Martin R M. Metallization of molecular hydrogen: Predictions from exact-exchange calculations [J]. Phys Rev Lett, 2000, 84(26): 6070-6073.
[73]  Cui L, Chen N H, Silvera I F. Excitations, order parameters, and phase diagram of solid deuterium at megabar pressures [J]. Phys Rev B, 1995, 51(21): 14987-14997.
[74]  Johnson K A, Ashcroft N W. Structure and bandgap closure in dense hydrogen [J]. Nature, 2000, 403(6770): 632-635.
[75]  Cui T, Cheng E, Alder B J, et al. Rotational ordering in solid deuterium and hydrogen: A path integral Monte Carlo study [J]. Phys Rev B, 1997, 55(18): 12253-12266.
[76]  Kaxiras E, Guo Z. Orientational order in dense molecular hydrogen: A first-principles path-integral Monte Carlo calculation [J]. Phys Rev B, 1994, 49(17): 11822-11832.
[77]  Maksimov E G, Shilov Y I. Hydrogen at high pressure [J]. Physics-Uspekhi, 1999, 42(11): 1121-1138.
[78]  Zhang L J, Niu Y L, Cui T, et al. Ab initio lattice dynamics evidence for the broken-symmetry phase of solid hydrogen [J]. J Phys: Condens Mat, 2006, 18(43): 9917.
[79]  〖JP4〗McMahon J M, Ceperley D M. Ground-state structures of atomic metallic hydrogen [J]. Phys Rev Lett, 2011, 106(16): 165302.
[80]  Eremets M I, Troyan I A. Conductive dense hydrogen [J]. Nature Mater, 2011, 10(12): 927-931.
[81]  Howie R T, Guillaume C L, Scheler T, et al. Mixed molecular and atomic phase of dense hydrogen [J]. Phys Rev Lett, 2012, 108(12): 125501.
[82]  Martonak R, Laio A, Parrinello M. Predicting crystal structures: The Parrinello-Rahman method revisited [J]. Phys Rev Lett, 2003, 90(7): 075503.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133