全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

亚稳相的高压暴露

DOI: 10.11858/gywlxb.1989.04.001, PP. 257-268

Keywords: 亚稳相暴露,生核与长大,液相过冷,高压变态,非晶合金

Full-Text   Cite this paper   Add to My Lib

Abstract:

很久以前,便有人指出,气态冷凝成固态时,要连续经历液相及各种高温相,才达到平衡结晶相。但是,液态及高温相往往需靠很大的冷却速度才能冻结下来,这在当时对绝大多数合金,是不可能的。近些年,随着超急冷等技术的进步,关于非晶等亚稳相得研究十分活跃。当超过一定临界冷却速度时,液态合金可固化为非晶态。虽然,亚稳结晶相较非晶应更容易冻结,但是,由于产生各种亚稳相所需的过冷条件各不相同,以及对冷却速度的选择不能是任意的,因此有时它们较非晶还难于形成。与液相凝固过程相似,非晶合金的晶化也服从构型最小重排原理,即在晶化完成之前,存在某些亚稳相变态阶段。但是,限于热力学上的不稳定性及动力学因素,在常压下这些亚稳相同样是难以发现的。作者根据对多种合金系的研究,提出高压暴露亚稳相的设想,并利用非晶等亚稳相的高压变态过程,将进行液态急冷时的速度控制方式,改为便于掌握的高压退火方式,来获得新亚稳相。本文对压力暴露亚稳相的原理和实践,加以论述。

References

[1]  Wang W K, Iwasaki H, Suryanarana C, et al. J Mater Sci, 1983, 18: 3765.
[2]  Wang W K, Iwasaki H, Suryanarana C, et al. J Mater Sci, 1982, 17: 1523.
[3]  Wang W K, Syono Y, Goto T, et al. Scripta Metall, 1981, 15: 1313.
[4]  Bendersky L, Biancaniello F, Boettinger W, et al. J Mater Sci Eng, 1987, 89: 151.
[5]  Wang W K, Wang Y J, He S A, et al. Z Physik B, 1988, 69: 481.
[6]  Wang W K, Ivvasaki H, Fukamichi K. J Mater Sci, 1980, 15: 2701.
[7]  王文魁, 何寿安, 徐小平, 等. 物理学报, 1983, 32: 1618.
[8]  黄新明, 王文魁, 何寿安. 高压物理学报, 1987, 1: 170.
[9]  Turnbull D. Metall Trans, 1981, A12: 695.
[10]  Ostwald W. Z Phys Chem, 1897, 22: 289.
[11]  Cahn J W. Rapid Solidification Processing Principles and Technology Ⅱ. Clator's Publ, 1980: 24.
[12]  Ishihara K, Meada M, Shingu P. Acta Metall, 1985, 33: 2113.
[13]  Eustathopoulos N. Int Metall Rev, 1983, 28: 189.
[14]  Wilsom H A. Phil Mag, 1980, 50: 239.
[15]  Frenke J. Physik Z Sowjetunion, 1932, 1: 498.
[16]  Hilling W B, Turnbull D. J Chem Phys, 1956, 24: 914.
[17]  Spaepen F. High Temp Mater Process, 1986, 7: 91.
[18]  Turnbull D. 日本国际赏受赏记念讲演. 京都国际会馆, 1986.
[19]  Wang W K, Spaepen F. Mater Sci Eng, 1988, 98: 525.
[20]  Spaepen F. Lecture on "Phase Trasitions" at Harvard University, 1984.
[21]  Kui H W, Greer A L, Turnbull D. Appl Phys Lett, 1984, 45: 615.
[22]  Perepezko J H. ibid, with ref 5, 56.
[23]  Kaufman L, Bernstein H. Computer Calculation of Phase Diagrams. Academic Press, 1970: 12.
[24]  Klement W, Jayarman A. Progr Solid State Chem, 1966, 3: 289.
[25]  Stishnov S M, Tikhomiroya N A. J Expt Theory Phys, 1965, 48: 1215.
[26]  Graves J A, Perepezko J H. J Met Sci, 1986, 21: 4215.
[27]  Kamo M, Sato Y, Matsumoto S, et al. J Cryst Growth, 1980, 62: 642.
[28]  Miroshnichenco I S. Quenching from Liquid State. Metallurgia Moscow, 1982: 57.
[29]  Ishihara K N, Mori K, Shingu P H. Proc Conf on Rapidly Quenched Metals. ed by Steeb H. Elsevier Science Publ, 1985: 55.
[30]  Bundy F P. J Appl Phys, 1965, 30: 616.
[31]  Kaufman L, Bernstein H. ibid with ref 15, 23.
[32]  新宫秀夫, 铃木亮辅, 石原庆一. 材料, 1984, 33: 239.
[33]  王钊, 孟昭富, 王煜明, 等. 高压物理学报, 1987, 1: 121.
[34]  王文魁. 物理学进展, 1985, 4: 525.
[35]  Turnbull D. Hume-Rothery Symposium on Undercooling Alloy Phases. ed Coilings E W, Koch C C. TMSALME Symposia Proceedings.
[36]  王文魁. 物理学报, 1984, 33: 908.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133