Meyers M A. Dynamic Behavior of Materials [M]. New York: John Willey & Sons Inc, 1995.
[3]
McQueen R G. Optical Technique for Determining Rarefaction Wave Velocity at Very High Pressures [J]. Rev Sci Instrum, 1982, 53(2): 245-250.
[4]
Brown J M, Shaner J W. Rarefaction Velocity in Shocked Tantalum and the High Pressure Melting Point [A]. Asay J A. Shock Wave in Condensed Matter-1993 [C]. New York: Elsevier Science Publishers, 1984: 91-94.
Zhou Xianming, Jing Fuqian, Hu Jinbiao. Sound Speed in Shocked Tungsten Alloy: Its Significance in Studying Softening Mechanism to Multiphase Alloys [J]. Chin Phys Lett, 1996, 13: 761.
[7]
Gong Zi-zheng, Xie Hong-sen, Liu Yong-gang, et al. High-Pressure Sound Velocity of Perovskite-Enstatile and Possible Composition of the Earth's Lower Mantle [J]. Chin Phys Lett, 1999, 16: 695.
[8]
[8 ] Brown J M, McQueen R G. Phase Transition, Gruneisen Parameter and Elasticity for Shocked Iron between 77 GPa and 400 GPa [J]. J Geophys Res, 1986, 91: 7485.
[9]
McQueen R G, Brown J M. Optical Technique for Determining Rarefaction Wave Velocity at Very High Pressures [J]. Rev Sci Instrum, 1982, 53(2): 245-250.
[10]
李西军. 铁的高压熔化线研究 [D]. 绵阳: 中国工程物理研究院, 2000.
[11]
Grover R, Urtiew P A. Thermal Relaxation at Interfaces Following Shock Compression [J]. J Appl Phys, 1974, 45: 146.
[12]
Marsh S P. LASL Shock Hugoniot Data [M]. Berkley, California: University of California Press, 1980.
[13]
Ii Xijun, Zhou Xianming, Wang Fanhou, et al. Restudy of Gruneisen Parameter of Iron in the Pressure Range of 90~160 GPa [J]. Chin Phys Lett, 2000, 18: 85.
[14]
Asay J A. Rarefaction Velocity in Shocked Tantalum and the High Pressure Melting Point [A]. Asay J A. Shock Wave in Condensed Matter-1985, New York: Elsevier Science Publishers, 1986: 145-149.