全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

气相爆轰波沿胞格的动力学机理研究

DOI: 10.11858/gywlxb.2001.03.007, PP. 205-214

Keywords: 爆轰波,数值模拟,基元化学反应,网格

Full-Text   Cite this paper   Add to My Lib

Abstract:

建立了一种以子单元分析为基础,研究气相爆轰波沿胞格运动时的动力学机理的新方法。根据该子单元的性质和斜冲击波关系,首先推导了对撞前后前导冲击波沿胞格对称轴的马赫数之比和入射冲击波入射角及胞格几何性质的关系,求解了胞格结构中的三波点对撞问题。然后,采用爆炸波模拟前导冲击波的自持运动过程,求解气相爆轰波沿胞格的动力学过程,理论分析表明,气相爆轰波在胞格起点首先经历一个增长过程,然后才出现衰减。理论分析结果与实验和数值计算结果的比较表明符合得较好。

References

[1]  Urtiew P A. Idealized Two-Dimensional Detonation Waves in Gaseous Mixtures [J]. Acta Astronautica, 1976, 3: 187-200.
[2]  Takai R, Yoneda K, Hikita T. Study of Detonation Wave Structure [A]. Fifteenth Symposium (International) on Combustion [C]. Pittsburgh: The Combustion Institute, 1974: 68-78.
[3]  Barthel H O. Reaction Zone-Shock Front Coupling in Detonations [J]. Physican of Fluids, 1972, 15(1): 43-50.
[4]  Oran E S, Weber J E, Stefaniw E I, et al. A Numerical Study of Two-Dimensional H2-O2-Ar Detonation Using a Detailed Chemical Reaction Model [J]. Combustion and Flames, 1998, 113: 147-163.
[5]  Gamezo V N, Desbordes D, Oran E S. Formation and Envolution of Two-Dimensional Cellular Detonations [J]. Combustion and Flames, 1999, 116: 154-165.
[6]  Strehlow R A, Admaczyk A A, Stiles R J. Transient Studies of Detonation Waves [J]. Astronautica Acta, 1972, 17: 509-527.
[7]  Oppenheim A E, Smolen J J, Kwak D, et al. On the Dynamics of Shock Intersections [A]. Fifth Symposium (International) on Detonation [C]. Arlington, VA: ONR, Department of Navy, 1972: 119-1136.
[8]  Steel G B. Experimental Study of the Wave Structure of Marginal Detonation in a Rectangular Tube [D]. Berkeley, CA: University of California, 1966.
[9]  Strehlow R A. Gas Phase Detonations: Recent Developments [J]. Combustion and Flame, 1968, 12(2): 81-101.
[10]  Fickett W, Davis W C. Detonation [M]. Berkeley, CA: University of California Press, 1979.
[11]  Lee J H S. Dynamic Parameters of Gaseous Detonations [J]. Ann Rev Fluid Mech, 1984, 16: 311-336.
[12]  Nettleton M A. Gaseous Detonation [M]. London: Chapman and Hall, 1987.
[13]  Lundstrom E A, Oppenheim A E. On the Influence of Nondteadiness on the Thickness of the Detonation Waves [J]. Proc Roy Soc A, 1969, 310: 463-478.
[14]  Crooker A J. Phenomenological Investigation of Low Mode Marginal Planar Detonations [D]. University of Illinois, 1969.
[15]  Strehlow R A. Multi-Dimensional Detonation Wave Structure [J]. Astronautica Acta, 1970, 15: 345-357.
[16]  Strehlow R A, Crook A J. The Structure of Marginal Detonation Waves [J]. Acta Astonautica, 1974, 1: 303-315.
[17]  Voitsekhovsky B V, Mitrofanov V V, Topchian M E. Front Structure of Detonation in Gases [R]. AD-633821, 1963.
[18]  Thomas G O, Lefebvre M H, van Tiggelen P J. Preliminary Experimental Investigation of Pressure Evolution in Detonation Cells [J]. Experimental and Fluid Science, 2000, 21: 64-70.
[19]  Lee J H S. Dynamic Structure of Gas Detonation, Dynamic Structure of Detonation in Gaseous and Dispersed Media [M]. Netherland: Kluwer Academic Publishers, 1991: 1-25.
[20]  Mitrofanov V V. Modern View of Gas Detonation Mechanisms [J]. Progress in Astronautics and Aeronautics, 1996, 137: 324-340.
[21]  Strehlow R A. Detonation Structure and Gross Properties [J]. Combustion Science Technology, 1971, 4: 65-71.
[22]  Edward D H, Hopper G, Job E M, et al. The Behaviour of the Frontal and Transverse Shocks in Gaseous Detonation Waves [J]. Astronautica Acta, 1970, 15: 323-333.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133