全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

冲击载荷下非晶态碳材料的动态响应模型研究

DOI: 10.11858/gywlxb.2002.01.006, PP. 34-41

Keywords: 非晶态材料,冲击响应,石英压力传感器,黎曼积分方法,动态本构模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

在一维应变冲击加载条件下,采用两个石英压力传感器进行了双值应力历史测量,对非晶态碳材料的动态响应特性进行了分析研究。研究结果表明,非晶态碳材料的冲击响应是简单稳定的,在试验冲击应力范围内为非线性弹性响应,Hugoniot曲线呈上凸的,表明材料内部传播的不是一个冲击波而是一簇压缩波,因此可采用特征线方法来解该冲击波问题,并用Riemann积分法对冲击应力过程进行修正,得到材料更精确的Hugoniot方程。还采用COPS程序对该材料的冲击响应过程进行了数值模拟,数值模拟曲线与试验曲线是很吻合的。表明采用Riemann积分法处理是合理的,此方法可以在VISAR测量中得到应用。

References

[1]  Kodali P, Walter K C, Nastasi M. Investigation of Mechanical and Tribological Properties of Amorphous Diamond-Like Carbon Coating [J]. Tribology Internalional, 1997, 30(8): 591.
[2]  Gust W H, Young D A. High Pressure Science and Technology [M]. New York: Plenum, 1979: 944.
[3]  Sekine, Toshimori. Diamond Synthesis by Weak Shock Loading [J]. J Mat Science, 1987, 22(10): 3615.
[4]  Meade C, Raymond Jeanloz. Frequency-Dependent Equation of State of Fused Silica to 10 GPa [J]. Physical Review B, 1987, 35(1): 236.
[5]  Gust W H, Young D A. Phase Transitions to 120 GPa for Shock-Compressed Pyrolytic and Hot-Pressed Boron Nitride [J]. Phys Rev B, 1977, 15: 5012.
[6]  Hiller L. The WSU SDC Technical Report, 1991.
[7]  Gupta Y M. High Strain-Rate Shear Deformation of a Polyurethane Elastomer Subjected to Impact Loading [J]. Polymer Eng And Sci, 1984, 24: 851.
[8]  Yuan G, Gupta Y M. An Improvement of the Interpretation Code of VISAR Interferometer System [R]. WSU Technical Report, SDC-94-03, 1994.
[9]  Fowles G R. Shock Wave Compression of Hardened and Annealed 2024 Aluminum [J]. J Appl Phys, 1961, 32: 1475.
[10]  Asay J R, Lipkin J. A Self-Consistent Technique for Estimating the Dynamic Yield Strength of a Shock-Loaded Material [J]. J Appl Phys, 1978, 49(7): 4243.
[11]  Gupta Y M, Keough D D, Walker D F, et al. Determination of the Impact Response of PMMA Using Combined Compression and Shear Loading [J]. Rev Sci Instrum, 1980, 51: 183.
[12]  Graham R A, Nielson F W, Benedick W B. Piezoelectric Current from Shock-Loaded Quartz-A Submicrosecond Stress Cange [J]. J Appl Phys, 1965, 36: 1775.
[13]  Jones G A. Sandia Laboratories Report, SC-RR-67-568, 1967.
[14]  Hayes D B, Gupta Y M. Impact Response of a Shorted Guard-Ring Quartz Gauge between 20 and 26 Killobar [J]. Rev Sci Instrum, 1974, 45: 1554.
[15]  Feng R, Gupta Y M. A Study of the Lateral Stress Response of Silicon Carbide during Uniaxial Shock Unloading [R]. WSU Technical Report, SDC-93-01, 1993.
[16]  Gust W H. Phase Transition and Shock-Compression Parameters to 120 GPa for Three Types of Graphite and lor Amorphous Carbon [J]. Physical Review B, 1980, 22(10): 4744.
[17]  Barker L M, Hollenbach R E. Laser Interferometer for Measuring High Velocities of Any Reflecting Surface [J]. J Appl Phys, 1972, 43: 4669.
[18]  Tang Z P, Gupta Y M, Bellamy P M. Impact Response of the Shorted Quartz Gauge to 40 Kbar [J]. Rev Sci Instrum, 1988, 59(7): 1189.
[19]  Feng R, Gupta Y M, Wong M K W. Dynamic Analysis of the Response of Lateral Piezoresistance Gauges in Shocked Ceramic [J]. J Appl Phys, 1997, 82(6): 2845.
[20]  Feng R, Raiser G F, Gupla Y M. Shock Response of Polycrystalline Silicon Carbide Undergoing Inelastic Deformation [J]. J Appl Phys, 1998, 83(1): 79.
[21]  Aidun J B, Gupta Y M. Analysis of Lagrangian Gauge Measurements of Simple and Nonsimple Plane Waves [J]. J Appl Phys, 1989, 65(5): 1898.
[22]  Craham R A. Piezoelectric Current from Shunted and Shorted Guard-Ring Quartz Gauges [J]. J Appl Phys, 1975, 46: 1901.
[23]  Barker L M, Hollenbach R E. Laser Interferomeler for Measuring High Velocities of any Reflecting Surface [J]. J Appl Phys, 1970, 41: 4208.
[24]  Gupta Y M. Measurement of Compression and Shear Waves in an Impact Experiment: Role of Gauge Leads in Particle-Velocity Measurements [J]. J Appl Phys, 1980, 51: 5352.
[25]  Fowles C R, Williams R F. Plane Stress Wave Propagation in Solids [J]. J Appl Phys, 1970, 41: 360.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133