全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

α-β石英相变的应变参数计算及其地质意义

DOI: 10.11858/gywlxb.2002.04.001, PP. 241-248

Keywords: &alpha,-&beta,石英相变,应变,应力,应变能

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用已有的α和β石英压缩性、热膨胀性、弹性及相变温度压力资料,计算了α-β石英相转变时,α和β石英的晶胞参数。依据虎克定律以及高压下β石英的弹性参数,估算了α-β石英相转变时的应变、应力和应变能。结果表明,在0~1.1GPa条件下,随压力升高,α-β石英相变的线应变介于-0.006~0.005之间,体应变介于-0.016~0.012之间,应力介于-0.46~0.14GPa之间;应变能介于965~2760kJ/m3之间。压力为0.5GPa左右时,α-β石英相变的应变、应力和应变能均达到最小值。在此基础上,讨论了壳内大规模酸性岩浆活动引起的α-β石英相变对壳内岩石的作用。

References

[1]  Heaney P J. Structure and Chemistry of the Low-Pressure Silica Polymorphs [A]. Heaney P J, Prewitt C T, Gibbs G V. Silica Physical Behavior, Geochemistry and Materials Applications. Reviews In Mineralogy [C]. 1994, 29: 1-40.
[2]  Hemley R J, Prewitt C T, Kingma K J. High-Pressure Behavior of Silica [A]. Heaney P J, Prewitt C T, Gibbs G V. Silica Physical Behavior, Geochemistry and Materials Applications. Reviews In Mineralogy [C]. 1994, 29: 41-118.
[3]  Lepage Y, Calvert L D, Gabe E J. Parameter Variation in Low Quartz between 94 and 298 K [J]. J of Phys and Chem Solids, 1980, 41: 721-735.
[4]  Carpenter M A, Salje E K H, Graeme-Barber A, et al. Calibration of Excess Thermodynamic Properties and Elastic Constant Variations Associated with the α?β Phase Transition in Quartz [J]. American Mineralogist, 1998, 83(1): 2-22.
[5]  Mcskimin H J, Andreatch P, Thurston R N. Elastic Moduli of Quartz Hydrostatic Pressure at 25℃ and -195. 8℃ [J]. Journal of Applied Physics, 1965, 36(5): 1624-1632.
[6]  McWhan D B. Linear Compression of α-Quartz to 150Kbar [J]. Journal of Applied Physics, 1967, 38: 347-352.
[7]  Vaidya S N, Bailey S, Pasternack T, et al. Compressibility of Fifteen Minerals to 45 Kilobars [J]. J Geophys Res, 1973, 78: 6893-6898.
[8]  Olinger B, Halleck P M. The Compression of Quartz [J]. Journal Geophysical Research, 1976, 81(32): 5711-5714.
[9]  Levien L, Prewitt C T, Weidner D J. Structure and Elastic Properties of Quartz at Pressure [J]. American Mineralogist, 1980, 65: 920-930.
[10]  Jorgensen J D. Compression Mechanisms in α-Quartz Structures-SiO2 And GeO2 [J]. J Appl Phy, 1978, 48(11): 5473-5478.
[11]  d'Amour H, Denner W, Schulz. Structure Determination Of α-Quartz up to 68×108 Pa [J]. Acta Crystallogr, 1979, B35: 550-555.
[12]  Pelous J, Vacher R. Thermal Brillouin Scattering in Crystalline and Fused Quartz from 20 to 1000℃ [J]. Solid State Communications, 1976, 18: 657-661.
[13]  Ackermann R J, Sorrell C A. Thermal Expansion and the High-Low Transformation in Quartz. Ⅰ. High-Temperature X-Ray Studies [J]. J Appl Cryst, 1974, 7: 461-467.
[14]  Ohno I. Temperature Variation of Elastic Properties of α Quartz up to the α-β Transition [J]. Journal of Physics of the Earth, 1995, 43: 157-169.
[15]  Carpenter M A, Salje E K H, Graeme-Barber A. Spontaneous Strain as a Determinant of Thermodynamic Properties for Phase Transitions in Minerals [J]. Eur J Mineral, 1998, 10: 621-691.
[16]  ZHONG Wei-fang, PI Dao-hua. Advanced Elasticity [M]. Wuhan: Huazhong University of Technology Press, 1993: 119-122. (in Chinese)
[17]  钟伟芳, 皮道华. 高等弹性力学 [M]. 武汉: 华中理工大学出版社, 1993: 119-122.
[18]  PAN Zhao-lu. Crystallography And Mineralogy(Ⅰ) [M]. Beijing: Geological Press, 1984: 71-92. (in Chinese)
[19]  潘兆橹. 结晶学及矿物学(上册) [M]. 北京: 地质出版社, 1984: 71-92.
[20]  Coe R S, Paterson M S. The α-β Inversion in Quartz: A Coherent Phase Transition under Nonhydrostatic Stress [J]. J Geophys Res, 1969, 74: 4921-4948.
[21]  Cohen L H. High-Low Quartz Inversion: Determination to 35 Kilobars [J]. J Geophys Res, 1967, 72(16): 4245-4251.
[22]  Koster van Groos A F, Ter Heege J P. The High-Low Quartz Transition up to 10 Kilobars Pressure [J]. Journal of Geology, 1973, 81: 717-724.
[23]  Mirwald P W, Massonne H J. The Low-High Quartz and Quartz-Coesite Transition to 40 kbar between 600℃ and 1600℃ and Some Reconnaissance Data on the Effect of NaAlO2 Component on the Low Quartz-Coesite Transition [J]. J Geophys Res, 1980, 85: 6983-6990.
[24]  Shen A H, Bassett W A. The α-β Quartz Transition at High Temperatures and Pressures in a Diamond-Anvil Cell by Laser Interferometry [J]. American Mineralogist, 1993, 78: 694-698.
[25]  YAN Zu-tong. An Approximate Relation between Cubical Thermal Expansion Coefficient of Solids and Pressure [J]. Chinese Journal of High Pressure Physics, 2000, 14(4): 251-256. (in Chinese)
[26]  严祖同. 固体热膨胀系数与压强关系的一个近似公式 [J]. 高压物理学报, 2000, 14(4): 251-256.
[27]  WANG Xin, CUI Qi-liang, PAN Yue-wu, et al. Pressure Effect on Lattice Distortions of La0. 3Bi0. 2Ca0. 5MnO3 [J]. Chinese Journal of High Pressure Physics, 2001, 15(1): 60-63. (in Chinese)
[28]  王欣, 崔启良, 潘跃武, 等. 压力对La0. 3Bi0. 2Ca0. 5MnO3中晶格畸变的影响 [J]. 高压物理学报, 2001, 15(1): 60-63.
[29]  CHEN Gang, LIAO Li-fan. Physical Foundation of Crystal [M]. Beijing: Scientific Press, 1992: 591-614. (in Chinese)
[30]  陈纲, 廖理几. 晶体物理学基础 [M]. 北京: 科学出版社, 1992: 591-614.
[31]  Bass J D. Elasticity of Minerals, Glasses, and Melts [A]. Ahrens T J. Mineral Physics and Crystallgraphy. A Handbook of Physical Constants [Z]. Washington D C: American Geophysical Union, 1995: 49.
[32]  GAO Shan, ZHANG Ben-ren. Radioactivity of Rocks in the Qinling Orogenic Belt and Adjacent Areas and the Current Thermal Structure and State of the Lithosphere [J]. Geochimica, 1993, (3): 241-252. (in Chinese)
[33]  高山, 张本仁. 秦岭造山带及其邻区岩石的放射性与岩石圈的现代热结构与热状态 [J]. 地球化学, 1993, (3): 241-251.
[34]  CHEN Rong. Mechanical Properties of Crustal Rocks-Theoretical Foundation and Experimental Method [M]. Beijing: Seismic Press, 1988: 38-50. (in Chinese)
[35]  陈顒. 地壳岩石的力学性能--理论基础与实验方法 [M]. 北京: 地震出版社, 1988: 38-50.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133