全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

金刚石压腔高温高压实验的压力标定方法及其现状

DOI: 10.11858/gywlxb.2004.01.014, PP. 78-82

Keywords: 红宝石,石英,,状态方程,压力标定

Full-Text   Cite this paper   Add to My Lib

Abstract:

介绍和评论了金刚石压腔中进行高温高压实验时的压力标定方法及其应用条件。其中红宝石和石英压标具有较高的准确度和精度,但前者不适合于高温和含饱和水条件下的标定,且在较低压力下误差较大,后者可用于高温且含水体系的压力标定,但仅适于低于2.0GPa时的压力标定。矿物状态方程是较可靠的方法,但不方便且受条件限制。采用水的状态方程进行压力标定,可以解决压腔中不允许有压标矿物的问题,但在实验过程中要求压腔的体积保持恒定。因此,在采用金刚石压腔进行高温高压实验时,应根据研究需要决定合适的压力标定方法,而且寻找新的压力标定方法仍是金刚石压腔高压实验的基础工作。

References

[1]  Shen Z X. High Pressure Raman Study of Non-Linear Optical Crystals [J]. Chinese Journal of High Pressure Physics, 2000, 14(2): 92-98. (in Chinese)
[2]  申泽骧. 非线性光学晶体的高压拉曼散射研究 [J]. 高压物理学报, 2000, 14(2): 92-98.
[3]  Xiao W S, Weng K N, Lü G C, et al. Experiments on Reaction of Polyethylene and Water under High Pressure and High Temperature [J]. Chinese Journal of High Pressure Physics, 2001, 15(3): 169-177. (in Chinese)
[4]  肖万生, 翁克难, 律广才, 等. 聚乙烯与水反应的高温高压实验及热力学探讨 [J]. 高压物理学报, 2001, 15(3): 169-177.
[5]  Barnett J D, Block S, Piermarini G J. An Optical Fluorescence System for Quantitative Pressure Measurement in the Diamond-Anvil Cell [J]. Review of Scientific Instruments, 1973, 44: 1-9.
[6]  Mao H K, Xu J, Bell P M. Calibration of the Ruby Pressure Gauge to 800 kbar under Quasi-Hydrostatic Conditions [J]. Journal of Geophysical Research, 1986, 91(B5): 4673-4676.
[7]  Bassett W A, Shen A H, Bucknum M. A New Diamond Cell for Hydrothermal Studies to 25 GPa and from -190 ℃ to 1200 ℃ [J]. Rev Sci Instrum, 1994, 64(8): 2340.
[8]  Christian S, Martin A Z. In-Situ Raman Spectroscopy of Quartz: A Pressure Sensor for Hydrothermal Diamond-Anvil Cell Experiments at Elevated Temperatures [J]. American Mineralogist, 2000, 85: 1725-1734.
[9]  Mao H K, Bell P M, Shaner J W, et al. Specific Volume Measurements of Cu, Mo, Pd and Ag and Calibration of the Ruby Fluorescence Pressure Gauge from 006 to 1 Mbar [J]. J Appl Phys, 1978, 49: 3276-3283.
[10]  Holloway J R. Fugacity and Activity of Molecular Species in Supercritical Fluids [A]. Fraser D G. Thermodynamics in Geology [C]. Dordrecht-Holland: Reidel Publishing Co, 1977: 161-181.
[11]  Haar L, Gallagher J S, Kell G S. NBS/NRC Steam Tables: Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water, in SI Units [M]. Washington, DC: Hemisphere Publishing Comp, 1984. 320.
[12]  Belonoshko A, Saxena S K. A Molecular Dynamics Study of the Pressure-Volume-Temperature Properties of Super-Critical Fluids: 1. H2O [J]. Geochim Cosmochim, Acta, 1991, 55: 381-387.
[13]  Holland T, Powell R. A Compensated-Redisch(CORK) Equation for Volumes and Fugacities of CO2 and the Range 1 bar to 50 kbar and 100~600 ℃ [J]. Contrib Mineral Petrol, 1991, 109: 265-273.
[14]  Duan Z, Moller N, Weare J H. An Equation of State for the CH4-CO2-H2O System: Ⅰ. Pure Systems from 0 to 1000 ℃ and 0 to 8000 bar [J]. Geochim Cosmochim Acta, 1992, 56: 2605-2617.
[15]  Spycher N F. Fugacity Coefficients of H2, CO2, CH4 and H2O and of H2O-CO2-CH4 Mixtures: A Virial Equation Treatment for Moderate Pressures and Temperature Applicable to Calculations of Hydrothermal Boiling [J]. Geochim Cosmochim Acta, 1988, 52: 739-749.
[16]  Philippe G, Claudine Biellmann, Bruno Reynard, et al. Raman Spectroscopic Studies of Carbonates, Part Ⅰ: High-Pressure and High-Temperature Behaviour of Calcite, Magnesite, Dolomite and Aragonite [J]. Phys Chem Minerals, 1993, 20: 1-18.
[17]  Andrzej G, Patrick S, Philippe G, et al. An Infrared Study of MgCO3 at High Pressure [J]. Physica B, 1999, 162: 67-73.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133